Relative Deprivation and Social Justice Revisited

Copyright 2021 John F Hall
[Final draft: 2 July 2021]

Introduction

This paper reports on:
1: Retrieval of data from a national survey conducted by the late Prof. Garry Runciman ${ }^{1}$ in Great Britain (1961-62).

Book: W G Runciman
Relative Deprivation and Social Justice (RKP 1966)
Fieldwork: 1962-63, Research Services Ltd (RSL)
2: Creation of an SPSS *.sav file containing all original variables.
3: Retrieval and restoration of a reduced data set created by Dr Annette Scambler at the University of Surrey and used for teaching Sociology undergraduates.

Page Contents

2 Acknowledgments

2 Theoretical background
3 UK Data Service holdings and Data history
$5 \quad$ SPSS files and SPSS for Windows files
6 Relative deprivation measures
12 Sample exercise
13 Sample SPSS work-through
17 Dichotomising the variables
18 Combining social class variables
21 Selecting control variables
23 Dichotomising the control variables
26 Elaboration
32 Custom Tables (SPSS CTABLES command)
40 Deprivation measures in SSRC Survey Unit Quality of Life in Britain survey, 1975

SPSS setup files

44 Television
45 Telephone
46 Car
47 Refrigerator
48 Washing machine
49 Record player
50 Central heating
51 SPSS macro for all 'materialist' consumer goods
52 SPSS setup file to create new social class variable
53 Epsilon calculations in Excel

References

54 Subjective measures
 55 Elaboration

[^0]
Acknowledgments

Dr Jane Fielding ${ }^{2}$

. . Senior Lecturer (University of Surrey). In 2001, to help me get started with SPSS for Windows, Jane kindly sent me her entire course notes (and had to explain how to open a blank syntax file!).

Major Lester ${ }^{3}$ (SPSS UK)

. . CEO of SPSS UK in 2001 who arranged for SPSS France to supply an evaluation version of SPSS 11 for Windows

SPSS France ${ }^{4}$

. . for supplying an evaluation version of SPSS 11 for Windows (later extended to a 5 -year free licence) which enabled the author's reviews ${ }^{5}$ of Julie Pallant's SPSS Survival Manual (2001 and later editions) conservation of valuable research materials, subsequent conversion of teaching materials for his Survey Analysis Workshop (SPSS), ${ }^{6}$ publication in 2009 of his website, Journeys in Survey Research ${ }^{7}$ and its subsequent maintenance and development.

SPSS Inc/IBM SPSS

. . for accepting the author's website as eligible for SPSS Academic Author status and for continuation of the free licence.

Susan Cadogan and colleagues ${ }^{8}$ (UKDS)

. for arranging release of the original raw data in binary card-image format.

Dr Mario Giesel

. . Data Scientist, Mediaplus Gruppe Munich for provision of the SPSS macro to automatically create a new set of variables from complex specifications.

Theoretical background

A useful introduction to the theoretical background of Runciman's book can be found in:
Rose, David (September 2006) 'Social Comparisons and Social Order: Issues Relating to a Possible Restudy of W.G. Runciman's Relative Deprivation and Social Justice' ${ }^{9}$
(ISER Working Paper 2006-48. Colchester: University of Essex)
Rose claims a replication of the survey would be too expensive. He seems unaware of the SSRC Survey Unit Quality of Life in Britain ${ }^{10}$ surveys, of which the 1975 wave partly replicates Runciman's questions on consumer aspirations.

[^1]
UK Data Service holdings

Catalogue: UKDS SN28 Persistent identifier: 10.5255/UKDA-SN-28-1

Citation: (1976). Relative Deprivation and Social Justice, 1962. [data collection]. UK Data Service. SN: 28, http://doi.org/10.5255/UKDA-SN-28-1

Data history:
1962-63 Original data on multi-punched 80-column Hollerith cards.
1966 SPSS file generated by Dr Annette Scambler at Surrey University for teaching students in Sociology.

Box 1: The Runciman study

```
TYE RUNGITANN STUDY
```

The orlginal atudy data for the RUNCTKNN filc in based on data which was collected by Runciman, and which formod the basis for the book 'relative Deprivation and Social Justico', 3966. The data found jn the RUNGImAN filo was reoonstruoted from the raw data and 13 rubject to certann inaccuracies. Minor differences will be found botween tho results quoted in the book, and the results computed from the data file. The DEPRIV thas excrcine contains a seloctod number of the oristinal RUNCIMNN variables.

Original data and two copies irretrievably lost.
Data re-punched at Essex from the original questionnaires, but Runciman issues a disclaimer on coding (see extract from UKDS SN28 User Guide ${ }^{11}$ below).

Box 2: Source of data set

```
3. Source of the Data Set
    The original data set and both the two coples made in
    1962 have been lost or destroyed. The data set held by the Archive
    has been newly compiled by the Archive from the interview achedules
    and details of the coding procedure may be supplied on request
    on the discretion of the Director of the Archlve. The schedules
    are in the possession of the undex-signed and may be consulted
    on application. In the compilation of the new data set by the
    Archive, nelther the original coding instructions used by Research
    Services nor such re-codings as were used in the preparation of
    the published tables were followed. The under-signed therefore
    disclams all responsibility for any drscrepancies between the
    published tables and tables whach might result from analysis
    of the 'Archlve data set.
```



```
February, 1974
    W.G. Runciman,
    Trumaty College, Cambradge.
```

[^2]Raw data: The raw data used in this report are on binary (multi-punched) card images which UKDS is unwilling to release to inexperienced users.

2014 Retrieval by John Hall (from multi-punched binary card-images) of the full original data set used by Runciman: creation of an SPSS *.sav file for use with SPSS for Windows, now deposited with UKDS.

The restored file addresses the reservations made by Runciman himself.
Recreation of Dr Scambler's reduced SPSS file used for teaching.
2014-2021 Modifications to correct variable attributes and improve labelling.
Construction of a sample exercise typical of what would be allocated to students.

Documentation:

User Guide: sn28userguide.pdf (Dr. Annette Scambler, University of Surrey)

Page Content

1-2 Description of survey, note on access, disclaimer by Runciman (1974)
3-4 Research methods exercise
5-9 Technical notes on SPSS file, syntax and use of computer
10-11 General information; exercise notes (December, 1975)
12-23 Codebook with marginal frequencies (Scambler 1975)
24-28 Facsimile questionnaire (reproduced from the book, pp352-370)
The original data were deposited at the SSRC Survey Archive, but there was no SPSS file until 1966, when one was generated at Surrey University by Dr Annette Scambler, using a subset of variables for teaching Sociology undergraduates. Her SPSS syntax files were written for SPSS-X on a mainframe computer: they dated from the 1970s and were unusable by SPSS for Windows.

In 2014 the author, who has extensive experience of 1970s SPSS syntax, retrieved Dr Scambler's original 1975 setup files, rewrote them for use with SPSS for Windows and recreated the original SPSS saved file she used for teaching.

SPSS files: Dr Scambler's original SPSS setup files were written in 1966 for use with SPSS-X on the CDC7600 ${ }^{12}$ mainframe computer at Surrey, using (now obsolete) syntax with Fortran-type sub-commands ${ }^{13}$ to read data from 80 -column card-images. Such commands had to be replaced with equivalent commands ${ }^{14}$ for use with SPSS for Windows.
sn0028.sav (SPSS-X, Essex 1966)
Restored 2014 by John Hall: this is the version now available from UKDS. Variable names are all lower case: all labels in UPPER CASE.
Some missing values and levels of measurement are missing or incorrect.
280 variables
1415 cases
deprived.sav (SPSS-X, Scambler, June 1975)
This is Dr Scambler's shortened SPSS file (prepared at Surrey University) for teaching Sociology undergraduates, later archived on the DEC-10 at Essex.

103 variables
1415 cases

SPSS for Windows files:

deprived_2.sav (SPSS for Windows, John Hall, 2014)
104 variables (Scambler's 103 variables, plus case number) 1415 cases

RDSJ.sav (SPSS for Windows, John Hall, 2014)
280 variables +16 derived variables.
1415 cases
sn28jfh6.sav (SPSS 27 for Windows, John Hall, May 2021)
300 variables 1415 cases

This file is being extensively updated, using SPSS syntax, to:
Specify correct levels of measurement
Add/correct missing values
Change variable labels from UPPER CASE to Mixed Case
Change value labels from UPPER CASE to Mixed Case.
It will be deposited at UKDS along with the associated SPSS *.sps setup files.
deprived_3.sav (SPSS for Windows, John Hall, June 2021)
115 variables (103 variables, plus case number, plus 11 derived variables)

[^3]
Relative deprivation measures

In his survey, Runciman presented respondents with a checklist of 7 "materialist" consumer items:

Item	varname
Television	tv
Telephone	phone
Car	car
Refrigerator	fridge
Washing machine	washmach
Record player	recordpl
Central heating	cheating

For each item he asked:
Does your household have . . . ?
[Yes, No, DK]

	Name	Label
45	tv	DO YOU HAVE TV
46	phone	DO YOU HAVE PHONE
47	car	DO YOU HAVE CAR
48	fridge	DO YOU HAVE FRIDGE
49	washmach	DO YOU HAVE WASHING MACHINE
50	recordpl	DO YOU HAVE RECORD PLAYER
51	cheating	DO YOU HAVE CENTRAL HEATING

IF NO; Would you like . . . ?
[Yes, No, DK]

52	wanttv	WOULD YOU LIKE TV
53	wantphn	WOULD YOU LIKE PHONE
54	wantcar	WOULD YOU LIKE CAR
55	wantrfg	WOULD YOU LIKE FRIDGE
56	wantwash	WOULD YOU LIKE WASHING MACHINE
57	wantrpl	WOULD YOU LIKE RECORD PLAYER
58	wantch	WOULD YOU LIKE CENTRAL HEATING

IF YES: Do you expect to get . . . in next year or so . . . ? [Yes, No, DK]

59	tvsoon	IS TV EXPECTED NEXT 2-3 YRS
60	phnsoon	IS PHONE EXPECTED NEXT 2-3 YRS
61	carsoon	IS CAR EXPECTED NEXT 2-3 YRS
62	frgsoon	IS FRIDGE EXPECTED NEXT 2-3 YRS
63	washsoon	IS WASHING MACHINE EXPECTED NEXT 2-3 YRS
64	rplsoon	IS R.PLAYER EXPECTED NEXT 2-3 YRS
65	chsoon	IS CENTRAL HEATING EXPECTED NEXT 2-3 YRS

He also presented respondents with a checklist of 6 "aspirational" items:

Item

A house of your own ${ }^{15}$
A fur coat for your wife [sic!!]
Do you already go abroad for holidays?
Do you already have a spare bedroom for family and friends to stay?
Do you already use first class travel?
Do you already use private education?

varname

ownhouse
furcoat
abroad
travel
sparebed
trainfst
educfee

A similar series of questions was asked of each of these:
Do you already have . . . ?
[Yes, No, DK]

	Name	Label
93	ownhouse	DO YOU OWN HOUSE
94	furcoat	DOES WIFE HAVE FUR COAT
95	travel	DO YOU GO ABROAD FOR HOLIDAYS
96	sparebed	DO YOU HAVE SPARE BEDROOM
97	trainfst	DO YOU USE FIRST CLASS TRAVEL
98	educfee	DO YOU USE PRIVATE EDUCATION

IF NO; Do you want/Would you like?
[Yes, No, DK]

	Name	Label
99	Ikhouse	DO YOU WANT OWN HOUSE
100	Ikcoat	DO YOU WANT FUR COAT FOR WIFE
101	Iktravel	DO YOU WANT HOLIDAYS ABROAD
102	Ikbed	DO YOU WANT SPARE BEDROOM
103	Ikfsttr	DO YOU WANT FIRST CLASS TRAVEL
104	lkedfee	DO YOU WANT PRIVATE EDUCATION

IF YES: Are others managing to afford?
[Yes, No, DK]

| | Name | Label |
| :---: | :--- | :--- | :--- |
| 105 | othhouse | DO OTHERS OWN HOUSE |
| 106 | othcoat | DO OTHERS HAVE FUR COAT |
| 107 | othtrav | DO OTHERS HAVE HOLIDAY ABROAD |
| 108 | othbed | DO OTHERS HAVE SPARE BEDROOM |
| 109 | othfsttr | DO OTHERS HAVE FIRST CLASS TRAVEL |
| 110 | othedfee | DO OTHERS HAVE PRIVATE EDUCATION |

[^4]The Runciman data were originally punched on 80 -column Hollerith cards ${ }^{16}$
Fig 1: 80-column Hollerith card

These cards have 12 punching positions. The digits 0 to 9 plus the upper and lower zones (usually denoted ' + ' and ' - ') were single-punched. The letters A to Z had two hole-punches in the same column: special characters had combinations of three punches in the same column.

It was standard practice by commercial agencies to punch data for more than one variable in a single column. For instance, for each household member, data for three variables were punched in a single column: codes 1 and 2 were used for sex of the respondent, codes 3 to 6 for marital status and codes 7 to $9,0, \mathrm{X}$ and Y for occupational status. Because multi-punching and upper and lower zones were used, the data for all variables were first read in as alpha, then recoded to numeric. For the "materialist" goods list, this yielded one code per item.

1 "Yes, already have"
9 "Don't know if already have"
2 "Don't have, don't want"
8 " DK if want"
3 " 'Want and expect to get"
4 " Want, but don't expect to get"
5 " Want, but don't know if expect to get"
However, the data in file sn0028.sav from UKDS are stored as three variables for each item, which makes analysis complex and difficult. It is better to create a single unique code for each item by combining the three binary codes as follows:

Question flow to split binary data:

Does your household have_?
Yes, $1 \rightarrow$ code as 1
No. $2 \rightarrow \rightarrow \quad$ IF NO:
DK 9
Would you like ?
Yes, $1 \Rightarrow \rightarrow \rightarrow \quad$ IF YES:

No, $2 \rightarrow$ code as 2 Do you expect to get. DK 8 . . in next year or so . ?

Yes $1 \Rightarrow$ code as 3
No $2 \underset{ }{\Rightarrow \text { code }}$ as 4
DK 5

New unique values in red.

[^5]Table 1: Television

	tv1 Have/want tv				
		Frequency	Percent	Valid Percent	Cumulative
		Percent			
Valid	Yes, already have	1185	83.7	84.0	84.0
	No, but want	65	4.6	4.6	88.6
	No, but don't want	161	11.4	11.4	100.0
	Total	1411	99.7	100.0	
Missing	No but don't know if want	2	.1		
	System	2	.1		
Total	Total	4	.3		

Table 2: Telephone

	phone1 Have/want phone				
					Cumulative
		Frequency	Percent	Valid Percent	Percent
Valid	1 Yes, already have	322	22.8	23.1	23.1
	2 No, but want	242	17.1	17.4	40.5
	3 No, but don't want	827	58.4	59.5	100.0
	Total	1391	98.3	100.0	
Missing	4 No but don't know if want	23	1.6		
	System	1	.1		
Total	Total	24	1.7		

Table 3: Car

	car1 Have/want car				
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	1 Yes, already have	540	38.2	38.6	38.6
	2 No, but want	383	27.1	27.4	65.9
	3 No, but don't want	477	33.7	34.1	100.0
	Total	1400	98.9	100.0	
Missing	4 No but don't know if want	12	.8		
	System	3	.2		
Total	Total	15	1.1		

Table 4: Refrigerator

fridge1 Have/want fridge					
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	1 Yes, already have	495	35.0	35.5	35.5
	2 No, but want	504	35.6	36.1	71.6
	3 No, but don't want	397	28.1	28.4	100.0
	Total	1396	98.7	100.0	
Missing	4 No but don't know if want	17	1.2		
	System	2	. 1		
	Total	19	1.3		
Total		1415	100.0		

Table 5: Washing machine
washmach1 Have/want washmach

				Cumulative Percent	
Valid	Frequency	Percent	Valid Percent	Pes, already have 2 No, but want	702
	49.6	50.1	50.1		
	3 No, but don't want	258	18.2	18.4	68.5
	Total	441	31.2	31.5	100.0
Missing	4 No but don't know if	1401	99.0	100.0	
	want	13	.9		
	System				
Total	Total	1	.1		

Table 6

recplayer1 Have/want recplayer					
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	1 Yes, already have	512	36.2	36.7	36.7
	2 No , but want'	150	10.6	10.8	47.5
	3 No, but don't want	733	51.8	52.5	100.0
	Total	1395	98.6	100.0	
Missing	4 No, but don't know if want	19	1.3		
	System	1	. 1		
	Total	20	1.4		
Total		1415	100.0		

Table 7

	cheating1 Have/want cheating				
					Cumulative
		Frequency	Percent	Valid Percent	Percent
Valid	1 Yes, already have	83	5.9	6.0	6.0
	2 No, but want	525	37.1	38.0	44.0
	3 No, but don't want	774	54.7	56.0	100.0
Total	1382	97.7	100.0		
Missing	4 No but don't know if	31	2.2		
	want				
System	2	.1			
Total	Total	33	2.3		

The new variables are appended to the file:
Figure 7: End of file in Variable View

	Name	Measure	Label	Values
105	phone1	- Ordinal	Have/want phone	\{1, Yes have\}...
106	car1	- Ordinal	Have/want car	\{1, Yes have\}...
107	tv1	- Ordinal	Have/want tv	\{1, Yes have\}...
108	fridge1	- Ordinal	Have/want fridge	\{1, Yes have\}...
109	washmach1	- Ordinal	Have/want washmach	\{1, Yes have\}...
110	recplayer1	- Ordinal	Have/want recplayer	\{1, Yes have\}...
111	cheating1	- Ordinal	Have/want cheating	\{1, Yes have\}...

. . with new values and labels:

Figure 8: Values and value labels

Sample exercise

Boxed items in the following text are extracts snipped from Annette Scambler's User Guide. ${ }^{17}$
There are no specific exercises set: students are allocated questions, asked to perform analyses and to comment on their results. Variables used in the following examples have been selected by the author as typical of student exercises in data analysis.

Hyperlinks are to pages and/or files on the author's website Journeys in Survey Research

```
1. Tho atudent ia raferred to Mike Procter's handout 'Thvariate ilelationships betwoon Categorical Variables' for information on how contincency tablos are created.
ND : Ono orosstabulates variablos togeiher and the reault is a contingenoy table.
Make bure you understand what a frequency dotribution and a joint fraquency diatribution are.
```

[NB: Mike Procter's handout is not included in the user guide.]
See: Block 2: Analysing one variable ${ }^{18}$
Block 3: Analysing two variables (and sometimes three) ${ }^{19}$
. especially 3.1 Two variables (CROSSTABS) ${ }^{20}$
2. Croatjng a hypothesis and proparang the date
a. With reforence to the nature of tho andependent variable you have been allocated, solect your dependent and control veriables.

Example:

Here's a typical task which might be set for students.
Hypothesis: Respondents who describe themselves as working class are more likely to vote Labour

Dependent variable: votenow

Q 22(a) If there was i Gericral Elation Co tomerrow, which parly would you tupporl?

Independent variable: class

Q 20(2) What socual cines would you say you belonged to? DO NOT READ OUT	Upper/Upper Middle Middle Lower Middle LIST $\left.\begin{array}{r}\text { Working } \\ \text { Other D K } \\ \text { none tic }\end{array}\right)$	1 3 3 5

[^6]
Sample SPSS work-through

Task1: Choose a dependent variable and an independent variable.

Dependent:	votenow	Q.22a: How would vote if General Election now?
Independent:	class	Q20.a: Self-assigned social class

Task2: Produce frequency distributions for the dependent and independent variables.

Frequency distributions

frequencies votenow class.
[NB: For the purpose of this exercise the main figures of interest are in the Valid Percent column.]
Table 8: Frequencies for votenow
votenow Q.22a: Party political preference

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	1 Conservative	429	30.3	31.1	31.1
	2 Liberal	277	19.6	20.1	51.2
	3 Labour	521	36.8	37.8	88.9
	4 Other	6	.4	.4	89.3
5 None-dk	147	10.4	10.7	100.0	
Total	1380	97.5	100.0		
Missing	0 Non response	35	2.5		
Total		1415	100.0		

Table 9: Frequencies for class

	class Q.20a: Social class of respondent				
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	1 Upper-upper mid	31	2.2	2.2	2.2
	2 Middle	457	32.3	32.3	34.5
3 Lower middle	110	7.8	7.8	42.3	
4 Working	574	40.6	40.6	82.8	
5 Other dk	243	17.2	17.2	100.0	
Total	1415	100.0	100.0		

Task 3: Produce two-way contingency tables for the dependent and independent variables.
b. Whth the help of Mike's handout work out the procese for creating a two-way orosstab using dapondent and independent variablos only.
[NB: Mike Procter's handout is not included in the user guide.]
crosstabs class by votenow.
. . displays class in the rows and votenow in the columns.
Table 12: Two-way contingency table class by votenow
class Q.20a: Social class of respondent * votenow Q.22a: Party political preference Crosstabulation
Count

		votenow Q.22a: Party political preference					Total
		Conservative	Liberal	Labour	Other	Nonedk	
class Q.20a:	Upper-upper mid	22	7	2	0	0	31
Social class of	Middle	213	94	91	2	50	450
respondent	Lower middle	33	32	28	0	14	107
	Working	101	103	297	3	51	555
	Other dk	60	41	103	1	32	237
Total		429	277	521	6	147	1380

[NB: There are 35 cases missing from this table because they did not answer Q.22a.]
The number of cases with valid data for both class and votenow has been reduced from 1415 to 1380.

From this table it is difficult to ascertain the relationship, if any, between class and votenow as the cells contain only raw data counts. [Note the word Count at top left of the table.]

The figures need to be standardised to make it easier to compare the distributions.
One way of doing this is to calculate, within each category of the independent variable class, the percentage who state a political preference for any category of the dependent variable votenow.

The figures in each row need to be expressed as a percentage of the total number of cases in that row.

There are only 31 cases in Upper-upper mid: this is not enough to use as a base for percentages.
A rule of thumb is that percentages should not be calculated for fewer than 40 cases. ${ }^{21}$
Standard practice when $\mathbf{n}<40$ is to enter the row counts in cells [in square brackets] instead.
To get row percentages for the table:
crosstabs class by votenow /cells row.

[^7]
Table 13:

class Q.20a: Social class of respondent * votenow Q.22a: Party political preference Crosstabulation
\% within class Q.20a: Social class of respondent

Working class people (53.5\%) are more likely to vote Labour. (NB: [n] in top row added manually by author)

This table makes it easier to compare the voting preferences of the different social classes, but the bases for percentages are not shown. The figures appear to support the initial hypothesis that working class people are more likely to vote Labour. Indeed, there is quite a steep gradient from 6.5% of upper-middle and middle class to 53.5% of working class respondents saying they would vote Labour.

In response to Q.20(a) 32 respondents did not indicate a social class, so are not included in this table. These respondents were therefore asked a supplementary question.

In the file this variable is wchclass 'Q.20b: Middle class or working class'
frequencies wchclass.
Table 14: Frequencies for wchclass 'Q.20b: Middle class or working class' wchclass $Q .20 \mathrm{~b}$: Middle class or working class

Frequency	Percent	Valid Percent	Cumulative Percent		
Valid	Not applicable	1172	82.8	82.8	82.8
	Middle class	70	4.9	4.9	87.8
	Working class	160	11.3	11.3	99.1
	Dont know	13	.9	.9	100.0
Total	1415	100.0	100.0		

In response to Q.20b, 130 extra people (70 middle and 160 working) now indicate a social class.
crosstabs wchclass by votenow /cells row.
Table 15: Two-way contingency table of wchclass by votenow

wchclass Q.20b: Middle class or working class * votenow Q.22a: Party political preference Crosstabulation

\% within wchclass Q.20b: Middle class or working class

		votenow				Q.22a: Party political preference	
		Conservative	Liberal	Labour	Other	None-dk	Total
wchclass Q.20b:	Not applicable	32.3%	20.6%	36.6%	0.4%	10.1%	100.0%
Middle class or	Middle class	42.9%	22.9%	22.9%		11.4%	100.0%
working class	Working class	17.9%	14.7%	53.8%	0.6%	12.8%	100.0%
	Dont know	18.2%	18.2%	27.3%		36.4%	100.0%
Total		31.1%	20.1%	37.8%	0.4%	10.7%	100.0%

In response to Q.20b, working class people (53..8\%) are more likely than middle class (22.9\%) to vote Labour.

Dichotomising the variables

It will be easier later to work with variables containing only two categories (i.e dichotomised).

Dependent variable

Dependent variable votenow can be grouped into Labour and Non-Labour.

* Encoding: UTF-8.
title Dichotomise votenow.
*Dichotomise vote Labour/Not Labour.
recode votenow ($3=1$)(1,2,4,5=2) into labvote.
formats labvote (f1.0).
variable level labvote (nominal).
variable labels labvote 'Dichotomised vote: Labour/Not Labour'.
value labels 1 'Labour' 2 'Not Labour'.
frequencies labvote.
Table 18: Frequency count for derived dependent variable labvote

	labvote Labour or Non-Labour				
				Valid	Cumulative
		Frequency	Percent	Percent	Percent
Valid	Labour	521	36.8	37.8	37.8
	Not Labour	859	60.7	62.2	100.0
	Total	1380	97.5	100.0	
Missing	System	35	2.5		
Total		1415	100.0		

It is good practice to check that the new variable labvote has been correctly derived.
*Check combination.
crosstabs labvote by votenow.
Table 19: Contingency table to check Labour and non-Labour voters.
labvote Labour or Non-Labour * votenow Q.22a: Party political preference Crosstabulation
Count

	votenow					Q.22a: Party political preference	Total
	Conservative	Liberal	Labour	Other	None-dk		
labvote Labour or	Labour	0	0	521	0	0	521
Non-Labour	Not Labour	429	277	0	6	147	859
Total	429	277	521	6	147	1380	

There are no Not-Labour voters in the Labour row and no Labour voters in the Not-Labour row. It is safe to proceed using derived variable labvote.

Combining social class variables

To ensure that all cases have a value for self-ascribed social class, the two variables class and wchclass need to be combined.

Multiplying the value of class by 10 and adding it to the value of wchclass produces a 2-digit value for a temporary intermediate variable dummyclass (which will not be saved). Thus someone coded 1 'Upper middle' for class and 0 for wchclass becomes 10 for dummyclass, someone coded 5 for class and 1 for wchclass becomes 51. Values 10, 20, 30 and 40 for dummyclass will be those with values 1 to 4 for class. Values 51 and 52 will be those with code 5 'Don't know' for class and codes 1 'Middle class' or 2 'Working class' for wchclass. Value 53 will be those with value 5 'Don't know' for class and value 3 for wchclass.

Figure 9: Coding for intermediate dummy variable dummyclass.

Variable Values

Value	Label	
dummyclass	10	Already Upper middle
	20	Already Middle class
	30	Already Lower Middle
40	Already Working class	
51	Middle class at Q20b	
52	Working class at Q20b	
	$53^{\text {a }}$	DK at Q20b

a. Missing value
[See page 52 for SPSS setup file]
frequencies dummyclass.
Table 16: Frequency count for intermediate dummy variable dummyclass.
dummyclass Intermediate dummy variable for social class

				Cumulative Percent	
Valid	Already Upper middle	31	2.2	2.2	2.2
	Already Middle class	457	32.3	32.6	34.8
	Already Lower Middle	110	7.8	7.8	42.7
	Already Working class	574	40.6	40.9	83.6
	Middle class at Q20b	70	4.9	5.0	88.6
	Working class at Q20b	160	11.3	11.4	100.0
	Total	1402	99.1	100.0	
Missing	53	13	.9		
Total		1415	100.0		

130 respondents replied "Don't know" at question Q20a (variable votenow). When asked the supplementary question Q20b (variable wchvote) 70 said they would describe themselves as Middle class and 160 as Working class. Only 13 cases remain with no self-described social class.
*Check combination.
crosstabs dummyclass by wchclass /missing include.
Table 17: Two-way contingency table to check combination.
dummyclass Intermediate dummy variable for social class * wchclass Q.20b: Middle class or working class Crosstabulation
Count

		wchclass Q.20b: Middle or working class				Total
		Not applicable	Middle class	Working class	Dont know	
dummyclass Intermediate dummy variable for social class	Already Upper middle	31	0	0	0	31
	Already Middle class	457	0	0	0	457
	Already Lower Middle	110	0	0	0	110
	Already Working class	574	0	0	0	574
	Middle class at Q20b	0	70	0	0	70
	Working class at Q20b	0	0	160	0	160
	53	0	0	0	13	13
Total		1172	70	160	13	1415

Of the 130 "Don't know" cases for votenow, and asked the supplementary question, 70 now describe themselves as Middle class and 160 as Working class. There are no mis-classified cases. The 2-digit combinations for dummyclass can be grouped into two categories in a new variable newclass:
*Derive new class variable.
recode dummyclass ($10,20,30,51=1)(40,52=2)$ into newclass.
missing values newclass (53).
formats newclass (f1.0).
variable level newclass (nominal).
variable labels newclass 'Social class'.
value labels newclass 1 'Middle class' 2 'Working class' 3 'DK'.
frequencies newclass.
Table 20: Frequencies for derived independent variable newclass

		newclass Social class			
		Frequency	Percent	Valid	Cumulative
		668	47.2	47.6	47.6
Valid	Middle class	664	51.9	52.4	100.0
	Working class	734	5.9		
	Total	1402	99.1	100.0	
Missing	System	13	.9		
Total		1415	100.0		

By combining responses for class and wchclass, the number of people identifying themselves as being in a social class has increased from 1380 to 1402. Only 13 cases remain unallocated to a social class.

This method of combining two variables into one is a very useful analytical trick.
crosstabs newclass by votenow/ cells row.
Table 21: Two-way contingency table for newclass by votenow.
newclass Social class * votenow Q.22a: Party political preference Crosstabulation \% within newclass Social class

		votenow Q.22a: Party political preference Conserv ative	Liberal	Labour	Other	None-dk	Total
newclass	Middle class	45.3%	22.6%	20.8%	0.3%	10.9%	100.0%
Social class	Working class	18.1%	17.7%	53.6%	0.6%	10.0%	100.0%
Total		31.2%	20.1%	37.8%	0.4%	10.4%	100.0%

Working class people (53.6\%) are more likely to vote Labour than Middle class people (20.8\%).
Table 21 above is known as a zero-order table, defined as such because there is no control variable. Tables with one control variable are known as $1^{\text {st }}$ order tables; those with two control variables as $\mathbf{2}^{\text {nd }}$ order tables, and so on.

An important statistic for the next stage of analysis is the percentage point difference between middle class (20.8%) and working class (53.6%) voting Labour. This statistic -32.8 (calculated as 20.8% minus 53.6%) is known as epsilon (the Greek letter \mathcal{E})

Further analysis will investigate what happens to this epsilon value - 32.8 when introducing control variables.

Task 4: Selecting control variables.
What other variable(s) might also affect voting intention?
Try to think of some and then check to see if there are any corresponding variables in the file.
Possible candidates for control variables are:

Candidate

Home ownership	ownhouse	Q.13a: Do you own house?
Age	age	Q.31a: Respondents age [grouped]
Sex	sex	Q.31a: Respondents sex [Interviewer assessed]

First, check the frequencies for these variables:
frequencies ownhouse.
Table 22: Frequencies for ownhouse Q.13a: Do you own house?
ownhouse Q.13a: Do you own house

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Y Yes	633	44.7	44.8	44.8
	2 No	780	55.1	55.2	100.0
	Total	1413	99.9	100.0	
Missing	O Non	1	.1		
	response				
	3 Dont know	1	.1		
	Total	2	.1		
Total		1415	100.0		

frequencies age.
Table 23: Frequencies for age Q.31a: Respondents age [grouped]
age Q.31a: Respondents age [grouped]

				Valid Prequency	Cumulative Percent
Valid	$121-29$	143	10.1	10.1	10.1
	$230-39$	256	18.1	18.1	28.2
	$340-45$	175	12.4	12.4	40.6
$446-49$	123	8.7	8.7	49.3	
	327	23.1	23.1	72.4	
	242	17.1	17.1	89.5	
	149	10.5	10.5	100.0	
	1415	100.0	100.0		

frequencies sex.
Table 25: Frequencies for sex Q.31a: Respondents sex [Interviewer assessed]
sex Q.31a: Respondents sex [Interviewer assessed]

			Valid Percent	Cumulative Percent	
Valid	Frequency	Percent	Man head-house	593	41.9
	41.9				
	2 Man not head	56	4.0	4.0	45.9
	3 Woman hswife	721	51.0	51.0	96.8
	4 Not housewife	45	3.2	3.2	100.0
	1415	100.0	100.0		

[NB: This is a bizarre way to record sex: it needs reducing to two groups.]
recode sex (1,2=1)(3,4=2) into rsex.
formats rsex (n1).
variable labels rsex 'Sex of respondent'.
value labels rsex 1 'Men' 2 'Women'.
variable level rsex (nominal).
frequencies rsex.
Table 26: Frequencies for rsex Sex of respondent

	rsex Sex of respondent							
		Frequency	Percent	Valid Percent	Cumulative Percent			
Valid	Men	649	45.9	45.9	45.9			
	Women	766	54.1	54.1	100.0			
	Total	1415	100.0	100.0				

Dichotomising the control variables

[NB: Variable ownhouse is already dichotomous.]
Task 6: Dichotomise age.
Variable age has too many age groups for elaboration: the resultant three-way contingency tables would be enormous. It needs to be reduced to two groups, preferably of approximately equal size. The closest we can get to two equal size groups is:
*Dichotomise age.

frequencies age.

recode age (23 4=1)(567=2) into age2.
variable level age2 (nominal).
formats age2 (f1.0).
variable labels age2 'Dichotomised age'.
value labels age2 1 'Under 50' 2 '50 and over'.
frequencies age2.

Table 24: Frequencies for age2 (Dichotomised age)

	age2 Dichotomised age				
					Cumulative Frequency
		Percent	Valid Percent	Percent	
Valid	Under 50	554	39.2	43.6	43.6
	50 and over	718	50.7	56.4	100.0
	Total	1272	89.9	100.0	
Missing	System	143	10.1		
Total		1415	100.0		

All control variables are now dichotomised.

Task 5: Elaboration ${ }^{22}$
c. Flaborate by untroducing your control variable.

Dependent: votenow Q.22a: How would vote if General Election now? Independent:
 newclass
 Dichotomised social class

Possible control variables:
ownhouse
Q.13a: Do you own house?
age \quad Q.31a: Respondents age [grouped]
rsex Sex of respondent

Before producing three-way or multi-way contingency tables (which can have enormous numbers of cells) it is best to produce two-way contingency tables for the control variables and the dependent variable.
crosstabs ownhouse by votenow /cells row.
Table 27: Two-way contingency table for control variable ownhouse

		votenow Q.22a: Party political preference					Total
		Conservative	Liberal	Labour	Other	None-dk	
ownhouse Q.13a: Do	Yes	39.7\%	25.4\%	24.8\%	0.2\%	9.9\%	100.0\%
you own house	No	24.1\%	15.8\%	48.2\%	0.7\%	11.2\%	100.0\%
Total		31.0\%	20.1\%	37.8\%	0.4\%	10.7\%	100.0\%

Owners (24.8\%) are less likely to vote Labour than non-owners (48.2\%)
Epsilon $\mathcal{E}=-23.4$ (owners 24.8% minus non-owners 48.2\%)
crosstabs age 2 by votenow/cells row.
Table 28: Two-way contingency table for control variable age2
age2 Dichotomised age * votenow Q.22a: Party political preference Crosstabulation
\% within age2 Dichotomised age

		votenow Q.22a: Party political preference					Total
		Conservative	Liberal	Labour	Other	None-dk	
age2	Under 50	29.6%	19.9%	41.9%	0.2%	8.5%	100.0%
	50 and over	33.3%	20.8%	33.7%	0.4%	11.8%	100.0%
Total		31.7%	20.4%	37.3%	0.3%	10.3%	100.0%

The under 50 s are more likely to vote Labour (41.9%) than those aged 50 and over (33.7\%). Epsilon $\mathcal{E}=+\mathbf{8 . 2}$ (41.9\% minus 33.7\%)
[NB: The author's convention is to use blue for positive epsilons and red for negative]

[^8]crosstabs rsex by votenow /cells row.
Table 29: Two-way contingency table for control variable rsex
rsex Sex of respondent * votenow Q.22a: Party political preference Crosstabulation

		votenow Q.22a: Party political preference					Total
		Conservative	Liberal	Labour	Other	None-dk	
rsex Sex of	Male	28.0\%	21.1\%	40.3\%	0.6\%	9.9\%	100.0\%
respondent	Female	33.6\%	19.2\%	35.6\%	0.3\%	11.3\%	100.0\%
Total		31.1\%	20.1\%	37.8\%	0.4\%	10.7\%	100.0\%

Men (40.3\%) are more likely to vote Labour than women (35.6\%)
Epsilon $\varepsilon=+4.7$ (Men 40.3% minus women 35.6%)

Derived variables newclass labvote age2 and rsex are appended to the file:
Figure 9: End of file in Variable View

| | Name | Measure | Label |
| :---: | :--- | :--- | :--- | :--- |
| 297 | newclass | Nominal | Dichotomised Social class |
| 298 | labvote | Nominal | Dichotomised vote: Labour/Not Labour |
| 299 | age2 | Nominal | Dichotomised age |
| 300 | rsex | Nominal | Sex of respondent |

Elaboration ${ }^{23}$

Three-way contingency tables

Dependent:
Independent:
votenow
Q.22a: How would vote if General Election now?
Control:

newclass

Dichotomised social class
ownhouse
Q.13a: Do you own house?
,

Table 26: Three-way contingency table: newclass by vote controlling for ownhouse
crosstabs newclass by votenow by ownhouse /cells row.
newclass * votenow Q.22a: Party political preference * ownhouse Q.13a: Do you own house Crosstabulation

\% within newclass ownhouse Q.13a: Do you own house			votenow Q.22a: Party political preference					Total
			Conservative	Liberal	Labour	Other	None-dk	
$\frac{\text { nouse }}{\text { Yes }}$	newclass	Middle class	49.7\%	25.7\%	15.2\%		9.4\%	100.0\%
		Working class	25.0\%	25.0\%	39.7\%	0.4\%	9.9\%	100.0\%
	Total		40.3\%	25.4\%	24.6\%	0.2\%	9.6\%	100.0\%
No	newclass	Middle class	39.2\%	18.7\%	28.3\%	0.7\%	13.1\%	100.0\%
		Working class	14.8\%	14.2\%	60.3\%	0.6\%	10.0\%	100.0\%
	Total		23.9\%	15.9\%	48.4\%	0.7\%	11.2\%	100.0\%
Total	newclass	Middle class	45.2\%	22.7\%	20.9\%	0.3\%	11.0\%	100.0\%
		Working class	18.1\%	17.7\%	53.6\%	0.6\%	10.0\%	100.0\%
	Total		31.1\%	20.1\%	37.9\%	0.4\%	10.5\%	100.0\%

Working class people are more likely than middle class to vote Labour, overall (53.6\%:20.9\%, $\varepsilon=+32.7$) and within house ownership.
Owners (39.7\%:15.2\%, $\boldsymbol{\varepsilon}=\boldsymbol{+} \mathbf{2 4 . 5}$) Non-owners (60.3\%:28.3\%, $\boldsymbol{\varepsilon}=+\mathbf{3 1 . 7}$)
The zero-order epsilon of $\boldsymbol{+ 3 2 . 7}$ has been partitioned into $\mathbf{+ 2 4 . 5}$ and $\mathbf{+ 3 1 . 7}$

[^9]| Dependent: | votenow | Q.22a: How would vote if General Election now? |
| :--- | :--- | :--- |
| Independent: | newclass | Dichotomised social class |
| Control: | age2 | Dichotomised age |

crosstabs newclass by votenow by age2 /cells row.
Table 27: Three-way contingency table: newclass by votenow controlling for age2
newclass * votenow Q.22a: Party political preference * age2 Dichotomised age Crosstabulation
\% within newclass

age2 Dichotomised age			votenow Q.22a: Party political preference					Total
			Conservative	Liberal	Labour	Other	None-dk	
Under 50	newclass	Middle class	44.1\%	24.9\%	22.2\%		8.8\%	100.0\%
		Working class	16.2\%	14.7\%	61.2\%	0.4\%	7.6\%	100.0\%
	Total		29.7\%	19.7\%	42.3\%	0.2\%	8.2\%	100.0\%
50 and over	newclass	Middle class	48.3\%	20.5\%	19.6\%	0.3\%	11.3\%	100.0\%
		Working class	19.9\%	21.3\%	46.4\%	0.5\%	11.7\%	100.0\%
	Total		33.3\%	20.9\%	33.8\%	0.4\%	11.5\%	100.0\%
Total	newclass	Middle class	46.4\%	22.4\%	20.7\%	0.2\%	10.2\%	100.0\%
		Working class	18.3\%	18.5\%	52.8\%	0.5\%	9.9\%	100.0\%
	Total		31.7\%	20.4\%	37.5\%	0.3\%	10.1\%	100.0\%

Working class people are more likely than middle class to vote Labour, both overall ($52.8 \%: 20.7 \%, \boldsymbol{\varepsilon}=+32.1$) and within age groups.
Under 50 (61.2\%:22.2\%, $\mathcal{E}=+39.0$) 50 and over (46.4\%:19.6\%, $\boldsymbol{\varepsilon}=+\mathbf{2 6 . 8}$)
The zero-order epsilon of $\boldsymbol{+ 3 2 . 1}$ has been partitioned into $\boldsymbol{+ 3 9 . 0}$ and $\boldsymbol{+ 2 6 . 8}$

Dependent:	votenow	Q.22a: How would vote if General Election now?
Independent:	newclass	Dichotomised social class
Control	rsex	Sex of respondent

crosstabs newclass by votenow by rsex /cells row.

Table 28: Three-way contingency table: class by votenow controlling for rsex

rsex Sex of respondent		votenow Q.22a: Party political preference					Total
		1 Conservativ e	2 Libera I		4 Other	5 None- dk	
1 Male	1 Middle class	42.9\%	21.4\%	23.9\%	0.4\%	11.4\%	100.0\%
	2 Working class	16.2\%	20.6\%	54.3\%	0.9\%	8.0\%	100.0\%
		28.3\%	21.0\%	40.5\%	0.6\%	9.5\%	100.0\%
2 Female	1 Middle class	47.1\%	23.5\%	18.5\%	0.3\%	10.6\%	100.0\%
	2 Working class	19.9\%	15.1\%	53.0\%	0.3\%	11.8\%	100.0\%
		33.6\%	19.3\%	35.6\%	0.3\%	11.2\%	100.0\%
Total	1 Middle class	45.3\%	22.6\%	20.8\%	0.3\%	10.9\%	100.0\%
	2 Working class	18.1\%	17.7\%	53.6\%	0.6\%	10.0\%	100.0\%
		31.2\%	20.1\%	37.8\%	0.4\%	10.4\%	100.0\%

Working class people are more likely than middle class to vote Labour, both overall ($53.6 \%: 20.8 \%, \boldsymbol{\varepsilon}=+\mathbf{2 9 . 7}$) and within sex groups.
Male (54.3\%:23.9\%, $\varepsilon=+30.5$) Female ($53.0 \%: 18.9 \%, \varepsilon=+34.1$)
The zero-order epsilon of $\mathbf{+ 2 9 . 7}$ has been partitioned into $\mathbf{+ 3 0 . 5}$ and $\mathbf{+ 3 4 . 1}$
[NB: Tables 26, 27 and 28 above do not display the row counts on which percentages are based.]

SPSS can produce tables in which the cells display both row percent and count, but they are quite cluttered and can be very large. The only way of displaying row counts as well as percentages in is to add:
/cells count row.
to the crosstabs command:
crosstabs newclass by votenow by ownhouse /cells count row.
Table 29: Three-way contingency table: class by votenow controlling for ownhouse
newclass * votenow Q.22a: Party political preference * ownhouse Q.13a: Do you own house Crosstabulation

ownhouse Q.13a: Do you own house				votenow Q.22a: Party political preference					Total
				Conservativ e	Liberal	Labour	Other	Nonedk	
Yes	newclass	Middle class	Count	186	96	57	0	35	374
			\% within class	49.7\%	25.7\%	15.2\%	0.0\%	9.4\%	100.0\%
		Working class	Count	58	58	92	1	23	232
			\% within class	25.0\%	25.0\%	39.7\%	0.4\%	9.9\%	100.0\%
	Total		Count	244	154	149	1	58	606
			\% within class	40.3\%	25.4\%	24.6\%	0.2\%	9.6\%	100.0\%
No	newclass	Middle class	Count	111	53	80	2	37	283
			\% within class	39.2\%	18.7\%	28.3\%	0.7\%	13.1\%	100.0\%
		Working class	Count	71	68	289	3	48	479
			\% within class	14.8\%	14.2\%	60.3\%	0.6\%	10.0\%	100.0\%
	Total		Count	182	121	369	5	85	762
			\% within class	23.9\%	15.9\%	48.4\%	0.7\%	11.2\%	100.0\%
Total	newclass	Middle class	Count	297	149	137	2	72	657
			\% within class	45.2\%	22.7\%	20.9\%	0.3\%	11.0\%	100.0\%
		Working class	Count	129	126	381	4	71	711
			\% within class	18.1\%	17.7\%	53.6\%	0.6\%	10.0\%	100.0\%
	Total		Count	426	275	518	6	143	1368
			\% within class	31.1\%	20.1\%	37.9\%	0.4\%	10.5\%	100.0\%

Relative Deprivation and Social Justice Revisited

crosstabs newclass by votenow by age2 /cells count row.
Table 30: Three-way contingency table: class by votenow controlling for age2

age2 Dichotomised age				votenow Q.22a: Party political preference					Total
				Conservativ e	Liberal	Labour	Other	None- dk	
Under 50	newclass	Middle class	Count	115	65	58	0	23	261
			\%	44.1\%	24.9\%	22.2\%	0.0\%	8.8\%	100.0\%
		Working	Count	45	41	170	1	21	278
		class	\%	16.2\%	14.7\%	61.2\%	0.4\%	7.6\%	100.0\%
	Total		Count	160	106	228	1	44	539
			\%	29.7\%	19.7\%	42.3\%	0.2\%	8.2\%	100.0\%
50 and over	newclass	Middle class	Count	158	67	64	1	37	327
			\%	48.3\%	20.5\%	19.6\%	0.3\%	11.3\%	100.0\%
		Working	Count	73	78	170	2	43	366
		class	\%	19.9\%	21.3\%	46.4\%	0.5\%	11.7\%	100.0\%
	Total		Count	231	145	234	3	80	693
			\%	33.3\%	20.9\%	33.8\%	0.4\%	11.5\%	100.0\%
Total	newclass	Middle class	Count	273	132	122	1	60	588
			\%	46.4\%	22.4\%	20.7\%	0.2\%	10.2\%	100.0\%
		Working	Count	118	119	340	3	64	644
		class	\%	18.3\%	18.5\%	52.8\%	0.5\%	9.9\%	100.0\%
	Total		Count	391	251	462	4	124	1232
			\%	31.7\%	20.4\%	37.5\%	0.3\%	10.1\%	100.0\%

crosstabs newclass by votenow by rsex /cells count row.
Table 31: Three-way contingency table: class by votenow controlling for rsex
newclass * votenow Q.22a: Party political preference * rsex Sex of respondent Crosstabulation

rsex Sex of respondent				votenow Q.22a: Party political preference					Total
				Conservative	Liberal	Labour	Other	None-dk	
Male	newclass	Middle class	Count	120	60	67	1	32	280
			\%	42.9\%	21.4\%	23.9\%	0.4\%	11.4\%	100.0\%
		Working class	Count	55	70	184	3	27	339
			\%	16.2\%	20.6\%	54.3\%	0.9\%	8.0\%	100.0\%
	Total		Count	175	130	251	4	59	619
			\%	28.3\%	21.0\%	40.5\%	0.6\%	9.5\%	100.0\%
Female	newclass	Middle class	Count	178	89	70	1	40	378
			\%	47.1\%	23.5\%	18.5\%	0.3\%	10.6\%	100.0\%
		Working class	Count	74	56	197	1	44	372
			\%	19.9\%	15.1\%	53.0\%	0.3\%	11.8\%	100.0\%
	Total		Count	252	145	267	2	84	750
			\%	33.6\%	19.3\%	35.6\%	0.3\%	11.2\%	100.0\%
Total	newclass	Middle class	Count	298	149	137	2	72	658
			\%	45.3\%	22.6\%	20.8\%	0.3\%	10.9\%	100.0\%
		Working class	Count	129	126	381	4	71	711
			\%	18.1\%	17.7\%	53.6\%	0.6\%	10.0\%	100.0\%
	Total		Count	427	275	518	6	143	1369
			\%	31.2\%	20.1\%	37.8\%	0.4\%	10.4\%	100.0\%

Although both counts and percentages are now displayed, the tables are quite cluttered and difficult to interpret: every cell in the output displays both counts and row \%. You certainly couldn't publish them like this.

Summary

ownhouse
The zero-order epsilon of $\mathbf{+ 3 2 . 7}$ has been partitioned into $\boldsymbol{+ 2 4 . 5}$ for owners and $\boldsymbol{+ 3 1 . 7}$ for nonowners
age2
The zero-order epsilon of $\mathbf{- 3 2 . 1}$ has been partitioned into $\mathbf{- 3 9 . 0}$ for under 50 and $\mathbf{- 2 6 . 8}$ for 50 and over
rsex
The zero-order epsilon of $\mathbf{- 3 2 . 8}$ has been partitioned into $\mathbf{- 3 0 . 5}$ for men and $-\mathbf{3 4} .5$ for women.
These tables are now very cluttered and difficult to interpret. Every cell in the output displays both counts and row \%: you certainly could not publish them like this.

Custom Tables

Tables 29 to 31 above are very cluttered as they display \% and count in each cell. However, a solution is available in SPSS.

SPSS command CTABLES can produce tables displaying both row percentages the row total counts on which they are based. CTABLES gives much more control of output, but (unless you use the GUI) the syntax can get very complex to the uninitiated (i.e. me!). For analysing one variable, the default output can be very sparse, but at least frequency distributions don't contain totally meaningless cumulative percentages totals for nominal variables.

Within the CTABLES command, tables must be specified one at a time with /table.
To display the variables in rows:
ctables /table by <variable> /table by <variable>.

To display the variables in columns:

ctables /table <variable>

/table <variable>.
1: Initial frequency counts (rows)
*To display dependent variable in rows.
ctables /table by votenow.

Table 32: votenow displayed horizontally in row

votenow Q.22a: Party political preference				
Conservative Count	Liberal Count	Labour Count	Other Count	None-dk Count
429	277	521	6	147

The table displays only counts for each category, but not the total count. To include the row total add: /categories variables= votenow total=yes.
ctables /table by votenow /categories variables= votenow total=yes .

Table 33: votenow displayed horizontally in row with row total added.

		votenow Q.22a: Party political preference					
		Conservative Count	Liberal Count	Labour Count	Other Count	None-dk Count	Total Count
newclass	Middle class	298	149	137	2	72	658
	Working class	129	126	381	4	71	711

2: Initial frequency counts (columns)

*To display independent variable in columns. ctables /table newclass.

Table 34: newclass, displayed vertically in column

		Count
newclass Social class	1 Middle class	668
	2 Working class	734

The table displays only counts for each category, but not the total count. To include the row total add: /categories variables= newclass total=yes .
ctables /table newclass /categories variables= newclass total=yes .
Table 35: newclass, displayed vertically in column in row with column total added.

		Count
newclass	Middle class	668
	Working class	734
	Total	1402

*To display control variables in columns.
ctables /table ownhouse.
Table 36; ownhouse displayed vertically in column

		Count
ownhouse Q.13a: Do	Yes	633
you own house	No	780

ctables /table age2
Table 37: age2 displayed vertically in column

	Count	
age2 Dichotomised	1 Under 50 age	250 and over

ctables /table rsex.
Table 38: rsex displayed vertically in column
Count

rsex Sex of	1 Male	649
respondent	2 Female	766

3: Contingency tables

*Zero order tables: row counts only.
ctables /table newclass by votenow
Table 39: Newclass by votenow

		votenow Q.22a: Party political preference				
		Conservativ e Count	Liberal Count	Labour Count	Other Count	None-dk Count
newclass	Middle class	298	149	137	2	72
	Working class	129	126	381	4	71

ctables /table ownhouse by votenow
Table 40: ownhouse by votenow

		votenow Q.22a: Party political preference				
		Conservative Count	Liberal Count	Labour Count	Other Count	None-dk Count
ownhouse Q.13a:	Yes	244	156	152	1	61
Do you own house	No	184	121	369	5	86

ctables /table age2 by votenow
Table 41: age2 by votenow

		votenow Q.22a: Party political preference				
		Conservative Count	Liberal Count	Labour Count	Other Count	None-dk Count
age2	Under 50	161	108	228	1	46
Dichotomised age	50 and over	232	145	235	3	82

ctables /table rsex by votenow .
Table 42: rsex by votenow

	votenow Q.22a: Party political preference					
		Conservative Count	Liberal Count	Labour Count	Other Count	None-dk Count
rsex Sex of respondent	Men	175	132	252	4	62

To produce tables with row percent based on row totals.
*Zero order tables: row percentages based on row total counts.
ctables /table newclass by votenow [rowpct.count].
Table 43: Newclass by votenow
votenow Q.22a: Party political preference

		votenow Q.22a: Party political preference				
		Conservative Row N \%	Liberal Row N \%	Labour Row N \%	Other Row N \%	None-dk Row N \%
newclass	Middle class	45.3\%	22.6\%	20.8\%	0.3\%	10.9\%
	Working class	18.1\%	17.7\%	53.6\%	0.6\%	10.0\%
Epsilon		-27.1	-4.9	+32.8	+0.3	-1.0

ctables /table ownhouse by votenow [rowpct.count].
Table 44: ownhouse by votenow

		votenow Q.22a: Party political preference				
		Conservative Row N \%	Liberal Row N \%	Labour Row N \%	Other Row N \%	None-dk Row N \%
ownhouse Q.13a: Do you	Yes	39.7\%	25.4\%	24.8\%	0.2\%	9.9\%
own house	No	24.1\%	15.8\%	48.2\%	0.7\%	11.2\%
Epsilon		+15.7	+9.6	-23.5	-0.5	-1.3

Table 45: age2 by votenow

		votenow Q.22a: Party political preference				
		Conservative Row N \%	Liberal Row N \%	Labour Row N \%	Other Row N \%	None-dk Row N \%
age2 Dichotomised	Under 50	29.6\%	19.9\%	41.9\%	0.2\%	8.5\%
age	50 and over	33.3\%	20.8\%	33.7\%	0.4\%	11.8\%
Epsilon		-3.7	-1.0	+8.2	-0.2	-3.3
ctables /table rsex by votenow [rowpct.count].						

Table 46: rsex by votenow

	votenow Q.22a: Party political preference					
		Conservative	Liberal	Labour	Other	None-dk
		Row $\mathrm{N} \%$				
rsex Sex of	Male	28.0%	21.1%	40.3%	0.6%	9.9%
respondent	Female	$\mathbf{3 3 . 6 \%}$	19.2%	35.6%	0.3%	11.3%
	Epsilon	$\mathbf{- 5 . 6}$	$\mathbf{+ 1 . 9}$	$\mathbf{+ 4 . 7}$	$\mathbf{+ 0 . 4}$	$\mathbf{- 1 . 3}$

CTABLES can produce tables with both row percentages and the row total counts used as a base.
For each /table subcommand add:
[rowpct.count totals [count]]
/categories variables= <row variable> total=yes .
*Zero order table for the independent variable: both row percent and row totals. ctables /table newclass by votenow [rowpct.count totals [count]] /categories variables= votenow total=yes.

Table 45: newclass by votenow

		votenow Q.22a: Party political preference					
		Conservative Row N \%	Liberal Row N \%	Labour Row N \%	Other Row N \%	None-dk Row N \%	Total Count
newclass	Middle class	45.3\%	22.6\%	20.8\%	0.3\%	10.9\%	658
	Working class	18.1\%	17.7\%	53.6\%	0.6\%	10.0\%	711
Epsilon		-27.1	-4.9	+32.8	+0.3	-1.0	

*Zero order tables for the control variables: both row percent and row totals. ctables /table ownhouse by votenow [rowpct.count totals [count]] /categories variables= votenow total= yes .

Table 46: ownhouse by votenow

		votenow Q.22a: Party political preference					
		Conservative Row N \%	Liberal Row N \%	Labour Row N \%	Other Row N \%	None-dk Row N \%	Total Count
ownhouse Q.13a:	Yes	39.7\%	25.4\%	24.8\%	0.2\%	9.9\%	614
Do you own house	No	24.1\%	15.8\%	48.2\%	0.7\%	11.2\%	765
Epsilon		+15.7	+9.6	-23.5	-0.5	-1.3	

ctables /table age2 by votenow [rowpct.count totals [count]] /categories variables= votenow total=yes.

Table 47: age2 by votenow

		votenow Q.22a: Party political preference					
		Conservative Row N \%	Liberal Row N \%	Labour Row N \%	Other Row N \%	None-dk Row N \%	Total Count
age2	Under 50	29.6\%	19.9\%	41.9\%	0.2\%	8.5\%	544
Dichotomised age	50 and over	33.3\%	20.8\%	33.7\%	0.4\%	11.8\%	697
Epsilon		-3.7	-1.0	+8.2	-0.2	-3.3	

ctables /table rsex by votenow [rowpct.count totals [count]] /categories variables= votenow total=yes.

Table 48: rsex by votenow

		votenow Q.22a: Party political preference					
		Conservative Row N \%	Liberal Row N \%	Labour Row N \%	Other Row N \%	None-dk Row N \%	Total Count
rsex Sex of	Male	28.0\%	21.1\%	40.3\%	0.6\%	9.9\%	625
respondent	Female	33.6\%	19.2\%	35.6\%	0.3\%	11.3\%	755
Epsilon		-5.6	+1.9	+4.7	+0.4	-1.3	

The above tables do not have column totals for the votenow groups: they are not needed.
It is now much easier visually to compare the votenow groups and also to calculate the epsilons (percentage point differences).
[NB: The epsilons were produced separately by copying the tables ${ }^{24}$ into Excel, performing the calculations and then copying the epsilons back into Word]

For elaboration purposes you need to compare these conditional distributions with the original distribution to see how it has been partitioned when controlling for test variables. More test variables can be added at any stage.

Summary tables can be useful.
Step 1: Prepare a blank table:

People earning $£ 12,000$ or more per annum from full time paid work

($\mathrm{n}=100 \%$)	All	Non-manual	Manual
	\%	\%	\%
All	()	()	()
	\%	\%	\%
Men	()	()	()
	\%	\%	\%
Women		()	()

[^10]Step 2: For each cell, enter \% and the (n) on which it is based.
People earning $£ 12,000$ or more per annum from full time paid work

\%	All	Nonmanual	Manual
	38.7\%	49.2\%	25.2\%
All	(1242)	(699)	(543)
Men	$\begin{aligned} & 49.5 \% \\ & \quad(834) \end{aligned}$	$\begin{aligned} & \text { 68.8\% } \\ & (401) \end{aligned}$	$\begin{aligned} & 31.6 \% \\ & (433) \end{aligned}$
Women	$\begin{aligned} & 16.7 \% \\ & (408) \end{aligned}$	$\begin{aligned} & 22.8 \% \\ & \text { (298) } \end{aligned}$	$\begin{aligned} & 0.0 \% \\ & (110) \end{aligned}$

Step 3: Calculate first order epsilons (percentage point differences) separately for sex and type of work.

\%	All	Nonmanual	Manual	First order epsilon
All	$\begin{aligned} & 38.7 \% \\ & (1242) \end{aligned}$	$\begin{array}{r} \hline 49.2 \% \\ (699) \end{array}$	25.2% (543)	+24.0
Men	$\begin{aligned} & 49.5 \% \\ & (834) \end{aligned}$	68.8\% (401)	$\begin{aligned} & 31.6 \% \\ & (433) \end{aligned}$	
Women	$\begin{aligned} & 16.7 \% \\ & (408) \end{aligned}$	$\begin{aligned} & 22.8 \% \\ & (298) \end{aligned}$	$\begin{aligned} & 0.0 \% \\ & (110) \end{aligned}$	
First order epsilon	+32.8			

Step 3: Calculate second order epsilons (percentage point differences) for all combinations of sex and type of work.

People earning $£ 12,000$ or more per annum from full time paid work

\%	All	Nonmanual	Manual	First order epsilon	Second order epsilon
All	$\begin{array}{r} \hline 38.7 \% \\ (1242) \end{array}$	$\begin{array}{r} 49.2 \% \\ (699) \end{array}$	25.2% (543)	+24.0	
Men	$\begin{aligned} & 49.5 \% \\ & \text { (834) } \end{aligned}$	68.8\% (401)	$\begin{aligned} & 31.6 \% \\ & (433) \end{aligned}$		+37.2
Women	$\begin{aligned} & 16.7 \% \\ & (408) \end{aligned}$	$\begin{aligned} & 22.8 \% \\ & (298) \end{aligned}$	$\begin{aligned} & 0.0 \% \\ & (110) \end{aligned}$		+22.8
First order epsilon	+32.8				
Second order epsilon		+46.0	+31.6		

d. Seleot the appropriate ntatistics for the cxplanation of your rosulta. These atatiatics will be computed by the SPSS package.

NB: If you have sufficient time available you should adopt the more sophisticated procedure wheroby you croenlabulato the dependent and independent variables together firet, and on tho besis of the outcome, thon select the control and elaborate.

What we can do is to creale two now codos thue:
Old codes $1,2=1$ (now code) Theso are the required
Old oodes $3,4=2$ (new code) codes
Old code $5=$ Missing data code
5. Discussion

Discuss your rosults explaining the association of your variables using og, porcentege differonce, Chi cquare, Phr (Gamma oquivalont). Jualify your lypothesis.

Deprivation measures in SSRC Survey Unit Quality of Life in Britain survey, 1975

The author used the same idea, the same coding scheme, and almost the same items, for the SSRC Survey Unit Quality of Life in Britain Survey, 1975. Fieldwork for both surveys was done by Research Services Ltd (RSL) who used Donovan Data Systems for computer processing and initial analysis.

The 1975 SSRC QoL questionnaire asked about:
A washing machine
Central heating
A car or van
A refrigerator
Colour TV
Your own telephone
A second home for weekends/holidays
A holiday of 4 or more nights away from home
[If YES] Was that holiday abroad?
Figure 2: Facsimile question QD. 1 for "materialist' items (SSRC 1975)

The codes for questions D.1(a) to D.1(j) were punched in columns 7 to 16 of card 3 .
For each item a) to h) in the list, the questions asked were:
Do you have XX ?
Yes
No If NO Would you like XX.?
DK

Yes
No If YES
DK Do you expect to get $X X$ in the next year or so .?
Yes
No
DK

For item h)
Have you had a holiday of 4 or more nights away from home in the last 12 months?
Yes
DK
No
If YES Was that abroad?
Yes
DK
No
If NO to either a holiday of 4 nights or a holiday abroad in the last 12 months
Have you ever had a holiday abroad?
Yes
DK
No
If NO Would you like a holiday abroad
Yes
DK
No
If YES Do you expect to get one in the next year or so?
Yes
DK
No
The coding scheme for all items was:
1 "Yes, already have"
9 "Don't know if already have"
2 " Don't have, don't want"
8 " DK if want"
3 " 'Want and expect to get"
4 " Want, but don't expect to get"
5 " Want, but don't know if expect to get"

The codes for these items were punched in columns 7 to 16 of card 3 and read in as:
VAR307 to VAR316 using the positional ${ }^{25}$ variable naming convention
Figure 3: 'Materialist' variables in file Variable View

117	var307	Numeric	1	0	QD1A WASHING MACHINE
118	var308	Numeric	4	0	QD1B CENTRAL HEATING
119	var309	Numeric	4	0	QD1C CAR OR VAN
120	var310	Numeric	4	0	QD1D REFRIGERATOR
121	var311	Numeric	4	0	QD1E COLOUR TELEVISION
122	var312	Numeric	4	0	QD1F OWN TELEPHONE
123	var313	Numeric	4	0	QD1G SECOND HOME FOR WEEKENDS HOLID...
124	var314	Numeric	1	0	QD1H HOLIDAY AWAY FROM HOME
125	var315	Numeric	1	0	QD1I HOLIDAY ABROAD
126	var316	Numeric	4	0	QD1J HOLIDAY ABROAD EVER

Note that, in the 1960s, SPSS could not accept Mixed Case. All labels are in UPPER CASE. All variable names had to start with VAR. VAR001 to VAR100 was allowed, but not Q1 to Q100. The data were supplied by RSL on 80 -column Hollerith ${ }^{26}$ cards on which, for each household member, data for three variables were punched in a single column. In column 55 of card 7 codes 1 and 2 were used for sex of the respondent, codes 3 to 6 for marital status and codes 7 to $9,0, \mathrm{X}(-)$ and $Y(+)$ for occupational status. The same coding was used in columns 56 to 62 for up to seven additional members of the household. This was standard practice at RSL and many other agencies.

Figure 4: Facsimile question for household composition (SSRC 1975)

Sex			arital	Status		Normal occupation status							
		Has				paid	Job		paid	job			
	F		$\begin{aligned} & \text { Sin- } \\ & \text { gle } \end{aligned}$	$\begin{aligned} & \text { Mar- } \\ & \text { ried } \end{aligned}$	$\begin{aligned} & \text { Wid } \\ & \text {-ow } \end{aligned}$	$\begin{aligned} & \text { Sep } \\ & \text { or } \\ & \text { Div } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Full } \\ \text { Tine } \\ 30+ \\ \text { hrs } \\ \text { per } \\ \text { week } \\ \hline \end{array}$	Part Time		Re- tired from Full Time job	Stu-dent		House-wifeDis-abledUnemp-loyed
M		$\begin{aligned} & 8-29 \\ & \mathrm{hrs} \\ & \mathrm{p} \cdot \mathrm{w} . \end{aligned}$						Un- der 8 hs p.w.					
1	2	3	4	5	6	7	8	9	0	X	γ	(55)	
1	2	3	4	5	6	7	8	9	0	X	Y	(56)	
1	2	3	4	5	6	7	8	9	0	X	Y	(57)	
1	2	3	4	5	6	7	8	9	0	X	Y	(58)	
1	2	3	4	5	6	7	8	9	0	x	Y	(59)	
1	2	3	4	5	6	7	8	9	0	X	Y	(60)	
1	2	3	4	5	6	7	8	9	0	X	Y	(61)	
1	2	3	4	5	6	7	8	9	0	X	Y	(62)	

[^11]The codes for each person in the household were originally multi-punched on a single column on 80 -column Hollerith cards (including the + [12] and - [11] positions, 2 cards per case). The codes indicated a unique series of responses for each item. Donovan Data Systems was able to read multi-punched data, but in 1970 SPSS could not.

These multi-punches were spread out spread out on an additional card 9 (using MUTOS ${ }^{27}$) as three separate variables for each person, then read in as alpha and recoded to numeric. Sex of respondent (41) marital status of respondent (42) and occupational status of respondent (43) were spread out on card 9 columns 41-43 and the data read into SPSS as var941 var942 and var943, using the positional ${ }^{28}$ variable naming convention.

Figure 5: Respondent variables in Variable View

421	var941	Numeric	1	0	XXX SEX OF RESPONDENT
422	var942	Numeric	1	0	XXX MARITAL STATUS OF RESPONDENT
423	var943	Numeric	1	0	XXX OCCUPATIONAL STATUS OF RESPONDENT

Sex, marital status and occupational status of all other household members were spread out on card 9 columns 44 to 64 . These data were then read into SPSS as variables VAR944 TO VAR964

For each household, the data look like this:
Figure 6: Variables for all household members Variable View

421	var941	Numeric	1	0	
422	var942	Numeric	1	0	XXX MARITAL STATUS OF RESPONDENT
423	var943	Numeric	1	0	XXX OCCUPATIONAL STATUS OF RESPONDENT
424	var944	Numeric	1	0	XXX SEX OF 2ND ADULT
425	var945	Numeric	1	0	XXX MARITAL STATUS OF 2ND ADULT
426	var946	Numeric	1	0	XXX OCCUPATIONAL STATUS OF 2ND ADULT
427	var947	Numeric	1	0	XXX SEX OF 3RD ADULT
428	var948	Numeric	1	0	XXX MARITAL STATUS OF 3RD ADULT
429	var949	Numeric	1	0	XXX OCCUPATIONAL STATUS OF 3RD ADULT
430	var950	Numeric	1	0	XXX SEX OF 4TH ADULT
431	var951	Numeric	1	0	XXX MARITAL STATUS OF 4TH ADULT
432	var952	Numeric	1	0	XXX OCCUPATIONAL STATUS OF 4TH ADULT
433	var953	Numeric	1	0	XXX SEX OF 5TH ADULT
434	var954	Numeric	1	0	XXX MARITAL STATUS OF 5TH ADULT
435	var955	Numeric	1	0	XXX OCCUPATIONAL STATUS OF 5TH ADULT
436	var956	Numeric	1	0	XXX SEX OF 6TH ADULT
437	var957	Numeric	1	0	XXX MARITAL STATUS OF 6TH ADULT
438	var958	Numeric	1	0	XXX OCCUPATIONAL STATUS OF 6TH ADULT
439	var959	Numeric	1	0	XXX SEX OF 7TH ADULT
440	var960	Numeric	1	0	XXX MARITAL STATUS OF 7TH ADULT
441	var961	Numeric	1	0	XXX OCCUPATIONAL STATUS OF 7TH ADULT
442	var962	Numeric	1	0	XXX SEX OF 8TH ADULT
443	var963	Numeric	1	0	XXX MARITAL STATUS OF 8TH ADULT
444	var964	Numeric	1	0	XXX OCCUPATIONAL STATUS OF 8TH ADULT

[^12]
SPSS setup files

The syntax below was the author's attempt (inefficient long way round) to generate matching variables with new values derived from the initial combinations of values for each consumer item:

Television

* Encoding: UTF-8

title 'Material goods'.
subtitle 'Television'.
*Check combinations
count tv1a = tv (2) wanttv (1)
/tv1b = tv (2) wanttv (2)
/tv1c = tv (2) wanttv (3).
frequencies tv1a tv1b tv1c.
*Create new variable.
compute tv $1=\mathrm{tv}$.
do if
tv1a=2.
compute tv1 $=2$.
else if
tv1b=2.
compute tv1 $=3$.
else if tv1c=2.
compute tv1 $=4$.
end if.
variable level tv1 (ordinal).
formats tv1a to tv1 (n1).
variable labels tv1 'Have/want tv'.
value labels tv1 1 'Yes have' 2 'no but want' 3 'no but not want' 4 'No but DK'.
frequencies tv1.
delete variables tv1a tv1b tv1c.

Telephone

subtitle 'Telephone'.
*Check combinations.
count phone1a $=$ phone (2) wantphn (1)
/phone1b $=$ phone (2) wantphn (2)
/phone1c = phone (2) wantphn (3).
frequencies phone1a phone1b phone1c.
*Create new variable.
compute phone1=phone.
do if
phone1a=2.
compute phone1 $=2$.
else if
phone1b=2.
compute phone1 $=3$.
else if phone1c=2.
compute phone1 $=4$.
end if.
variable level phone1 (ordinal).
formats phone1a to phone1c phone1 (n1).
variable labels phone1 'Have/want phone'.
value labels phone1 1 'Yes have' 2 'No but want' 3 'No but not want' 4 'No but DK'. frequencies phone1.
delete variables phone1a phone1b phone1c.

Car

title 'Material goods: Car'.
freq car.
subtitle 'Car'.
*Check combinations.
count car1a = car (2) wantcar (1)
/car1b = car (2) wantcar (2)
/car1c = car (2) wantcar (3).
frequencies car1a car1b car1c.
*Create new variable.
compute car1=car.
do if
car1a=2.
compute car1 $=2$.
else if
car1b=2.
compute car1 $=3$.
else if
car1c=2.
compute car1 $=4$.
end if.
variable level car1 (ordinal)
formats car1a to car1c car1 (n1).
variable labels car1 'Have/want car'.
value labels car1 1 'Yes have' 2 'No but want' 3 'No but not want' 4 'No but DK'.
frequencies car1.
delete variables car1a car1b car1c.

Refrigerator

title 'Material goods: fridge'.
freq fridge.
subtitle 'Refrigerator'.
*Check combinations.
count fridge $1 \mathrm{a}=$ fridge (2) wantfrg (1)
/fridge1b = fridge (2) wantfrg (2)
/fridge1c = fridge (2) wantfrg (3).
frequencies var fridge1a fridge1b fridge1c.
*Create new variable.
compute fridge $1=$ fridge.
do if
fridge $1 \mathrm{a}=2$.
compute fridge1 =2.
else if
fridge1b=2.
compute fridge1 $=3$
else if fridge1c=2.
compute fridge1 $=4$.
end if.
variable level fridge1 (ordinal).
formats fridge1a to fridge1c fridge1 (n1).
variable labels fridge 1 'Have/want fridge'.
value labels fridge1 1 'Yes have' 2 'No but want' 3 'No but not want' 4 'No but DK'.
frequencies fridge1.
delete variables var fridge1a fridge1b fridge1c.

Washing machine

title 'Material goods: washing machine'.
freq washmach.
subtitle 'washmach'.
*Check combinations.
count washmach $1 \mathrm{a}=$ washmach (2) wantwashmach (1)
/washmach1b = washmach (2) wantwashmach (2)
/washmach1c = washmach (2) wantwashmach (3).
frequencies washmach1a washmach1b washmach1c.
*Create new variable.
compute washmach1=washmach.
do if
washmach1a=2.
compute washmach1 =2.
else if
washmach1b=2.
compute washmach1 =3.
else if
washmach1c=2.
compute washmach1 $=4$.
end if.
formats washmach1a to washmach1c washmach1 (n1). variable level washmach1 (ordinal).
variable labels washmach1 'Have/want washmach'.
value labels washmach1 1 'Yes have' 2 'No but want' 3 'No but not want' 4 'No but DK'.
frequencies washmach1.
delete variables washmach1a washmach1b washmach1c.

Record player

title 'Material goods: Record player'.
frequencies recordpl.
*Check combinations.
count recplayer1a = recordpl (2) wantrpl(1)
/recplayer1b $=$ recordpl (2) wantrpl(2)
/recplayer1c = recordpl (2) wantrpl(3).
frequencies recplayer1a recplayer1b recplayer1c.
*Create new variable.
compute recplayer1=recordpl.
do if
recplayer1a=2.
compute recplayer1 $=2$.
else if recplayer $1 \mathrm{~b}=2$.
compute recplayer1 $=3$.
else if recplayer1c=2.
compute recplayer1 $=4$.
end if.
variable level recplayer1 (ordinal).
formats recplayer1 to recplayer1c (n1).
variable labels recplayer1 'Have/want recplayer'.
value labels recplayer1 1 'Yes have' 2 'No but want' 3 'No but not want' 4 'No but DK'.
frequencies recplayer1.
delete variables recplayer1a recplayer1b recplayer1c.

Central heating

title 'Material goods: Central heating. frequencies cheating.
*Check combinations.
count cheating1a = cheating (2) cheating(1)
/cheating1b =cheating (2) cheating(2)
/cheating1c = cheating (2) cheating(3).
frequencies cheating1a cheating1b cheating1c.

*Create new variable.

compute cheating1=cheating
do if
cheating $1 \mathrm{a}=2$.
compute cheating1 $=2$.
else if cheating1b=2.
compute cheating1 $=3$.
else if cheating1c=2.
compute cheating1 $=4$
end if.
variable level cheating1 (ordinal).
formats cheating to cheating1c (n1).
variable labels cheating1 'Have/want cheating'.
value labels cheating1 1 'Yes have' 2 'No but want' 3 'No but not want' 4 'No but DK'.
frequencies cheating1.
delete variables cheating1a cheating1b cheating1c.

The above syntax works, but is very long-winded and repetitive.

SPSS macro

Following a request to the SPSS-X forum ${ }^{29}$, Dr Mario Giesel (Data Scientist, Mediaplus Gruppe, Munich) kindly supplied the much shorter and more efficient macro below to create all of the derived variables above.

* Encoding: UTF-8.

DEFINE !format (!POS !CMDEND)
PRESERVE.
SET PRINTBACK = ON MPRINT = ON.
!DO !v !IN (!1) /* Loop over format arguments*/
!LET !XX1 = !CONCAT(!v,"1")
!LET !XX1a = !CONCAT(!v,"1a")
!LET !XX1b = !CONCAT(!v,"1b")
!LET !XX1c = !CONCAT(!v,"1c")
!LET ! $X X=$!v
!IF (!v = 'tv') !THEN !LET !wantXX = wanttv !IFEND
!IF (!v = 'phone') !THEN !LET !wantXX = wantphn !IFEND
!IF (!v = 'car') !THEN !LET !wantXX = wantcar !IFEND
!IF (!v = 'fridge') !THEN !LET !wantXX = wantfrg !IFEND
!IF (!v = 'washmach') !THEN !LET !wantXX = wantwash !IFEND
!IF (!v = 'recordpl') !THEN !LET !wantXX = wantrpl !IFEND
!IF (!v = 'cheating') !THEN !LET !wantXX = wantch !IFEND
count ! $\mathrm{XX1a}=$! XX (2) !want XX (1)
/!XX1b = !XX (2) !wantXX (2)
/! XX1c = !XX (2) !wantXX (3).
frequencies!XX1a!XX1b!XX1c.
compute ! $\mathrm{XX1}=!\mathrm{XX}$.
do if
! XX1a=2.
compute! $\mathrm{XX1}=2$.
else if
! $\mathrm{XX1b}=2$.
compute! $\mathrm{XX1}=3$.
else if
! XX1c=2.
compute! $\mathrm{XX1}=4$.
end if.
formats !XX1a to !XX1 (n1).
variable labels !XX1 !QUOTE(!CONCAT('Have/want ', !XX)).
value labels!XX1
1 'Yes, already have' 2 'No, but want' 3 "No, but don't want" 4 "No, but don't know if want". !DOEND
RESTORE.
!ENDDEFINE.

[^13]SPSS setup file dummyclass.sps to create new social class variable
title 'Derive new class variable'.
*temporarily disable missing values for class.
missing values class wchclass ().
execute.
*Combine variables to form intermediate dummy variable dummyclass. compute dummyclass = class * $10+$ wchclass.
formats dummyclass (n 2).
missing values dummyclass (53).
variable labels dummyclass 'Intermediate dummy variable for social class'.
value labels dummyclass
10 'Already Upper middle '
20 'Already Middle class'
30 'Already Lower Middle '
40 'Already Working class'
51 'Middle class at Q20b'
52 'Working class at Q20b'.
53 'DK at Q20b'.
frequencies dummyclass.

Epsilon calculations in Excel

ctables /table newclass by votenow [rowpct.count totals [count]] /categories variables= votenow total=yes

		votenow Q.22a: Party political preference					
		Conservative Row N \%	Liberal Row N \%	Labour Row N \%	Other Row N \%	None-dk Row N \%	Total Count
newclass	Middle class	45.3\%	22.6\%	20.8\%	0.3\%	10.9\%	658
	Working class	18.1\%	17.7\%	53.6\%	0.6\%	10.0\%	711

Copy table to Excel

		votenow Q.22a: Party political preference					
		Conservative Row N \%	Liberal Row N \%	Labour Row N \%	Other Row N \%	Nonedk Row N \%	Total Count
newclass	Middle class	45.3\%	22.6\%	20.8\%	0.3\%	10.9\%	658
	Working class	18.1\%	17.7\%	53.6\%	0.6\%	10.0\%	711

Calculate epsilons as cell value for Working class minus cell value for Middle class [= (D5-D4)*100: Hypothesis is that Working class are more likely to vote Labour.]

		votenow Q.22a: Party political preference					
		Conservative Row N \%	Liberal Row N \%	Labour Row N \%	Other Row N \%	Nonedk Row N	Total Count
newclass	Middle class	45.3\%	22.6\%	20.8\%	0.3\%	10.9\%	658
	Working class	18.1\%	17.7\%	53.6\%	0.6\%	10.0\%	711
Epsilon		-27.1	-4.9	32.8	0.3	-1.0	

[NB: Epsilons may be rounded]
Copy back to Word, but formats not always compatible between Word and SPSS.

References for Subjective Measures

Abrams M A
 Subjective Social Indicators
 in Nissel M (Ed) Social Trends No 4 HMSO, 1973

Abrams M A
Note: Subjective Social Indicators
Extract from Nissel,M [Ed] Social Trends 6, HMSO, 1975

Hall J F
Measuring the Quality of Life Using Sample Surveys in Stober G and Schumacher D (Eds) Technology Assessment and Quality of Life Elsevier, 1973

Hall JF and Ring A J
Indicators of Environmental Quality and Life-Satisfaction: a subjective approach.
Invited paper to Research Cttee 26 (Social Ecology) International Sociological Association 8th World Congress of Sociology, Toronto, August, 1974

Hall J F
Subjective measures of quality of life in Britain 1971 to 1975: Some developments and trends. Specially commissioned article in Thompson E (Ed) Social Trends No. 7 HMSO 1976

Rose, David (September 2006) 'Social Comparisons and Social Order: Issues Relating to a Possible Restudy of W.G. Runciman's Relative Deprivation and Social Justice' (ISER Working Paper 2006-48. Colchester: University of Essex)

References for Elaboration

Sect. 15.4 and Ch 20 in:
Blalock, Hubert M. .
Social Statistics
McGraw-Hill Book Co., Inc., 1960)
Loether, Herman J. and McTavish, Donald G.
Descriptive Statistics for Sociologists: An Introduction
Allyn and Bacon, 1974 , Ch 8
Rosenberg, Morris
The Logic of Survey Analysis
(Basic Books, 1968)
Ch 17, Sect 4 in:
Moser, C A and Kalton, G
Survey Methods in Social Investigation (1971)
Section 9 Elaboration in
Hall J F and Ring A J $(1989,2013)$
Statistical notes to accompany course

[^0]: ${ }^{1}$ See author's page: https://surveyresearch.weebly.com/sn-28-relative-deprivation-and-social-justice-1962-63.html

[^1]: ${ }^{3}$ https://www.surrey.ac.uk/people/jane-fielding
 ${ }_{4}$ See page 2 of Old Dog, Old Tricks for the author's introduction to SPSS for Windows on a PC after decades of using SPSS-X on mainframes https://surveyresearch.weebly.com/old-dog-old-tricks-using-spss-syntax-to-beat-the-mousetrap.html
 5 https://surveyresearch.weebly.com/julie-pallant-spss-survival-manual.htm
 ${ }_{7}^{6}$ https://surveyresearch.weebly.com/1-survey-analysis-workshop-spss.html
 7 https://surveyresearch.weebly.com/
 8 https://www.ukdataservice.ac.uk/about-us/people/team/
 9 https://www.iser.essex.ac.uk/files/iser working papers/2006-48.pdf
 ${ }^{10}$ https://surveyresearch.weebly.com/ssrc-survey-unit-quality-of-life-in-britain-surveys-1971-1975.html

[^2]: ${ }^{11} \mathrm{http}: / /$ doc.ukdataservice.ac.uk/doc/28/mrdoc/pdf/sn28userguide.pdf

[^3]: 12 https://en.wikipedia.org/wiki/CDC 7600
 ${ }^{13}$ Eg. N OF CASES, INPUT FORMAT, READ INPUT DATA
 ${ }^{14}$ Eg. DATA LIST, VARIABLE LEVEL, ADD VALUE LABELS

[^4]: ${ }^{15}$ The wording in this list is from the user guide: it may not be the same as in the original questionnaire

[^5]: ${ }^{16}$ using positions 0 to 9 and the '+' and ' - ' (upper and lower zone) positions: in some cases data for more than one variable were punched in a single column:

[^6]: 17 http://doc.ukdataservice.ac.uk/doc/28/mrdoc/pdf/sn28userguide.pdf
 18 https://surveyresearch.weebly.com/block-2-analysing-one-variable.html
 19 https://surveyresearch.weebly.com/block-3-analysing-two-variables-and-sometimes-three.html
 20 https://surveyresearch.weebly.com/31-two-variables-crosstabs.html

[^7]: ${ }^{21}$ When $N=40$, a single case is 2.5% : moving a case from one category to another makes a net difference of 5%.

[^8]: 22 See page 32 of Statistical notes to accompany the course
 [https://surveyresearch.weebly.com/uploads/2/9/9/8/2998485/statistical notes 2013 .pdf]

[^9]: ${ }^{23}$ See page 32 of Statistical notes to accompany the course
 https://surveyresearch.weebly.com/uploads/2/9/9/8/2998485/statistical notes 2013 .pdf

[^10]: ${ }^{24}$ For a fully worked example, see Appendix 2 in 3.2.1.7 Earnings differences 2009: Elaboration

[^11]: ${ }^{25}$ See https://surveyresearch.weebly.com/block-1-from-questionnaire-to-spss-saved-file.html
 ${ }^{26}$ See page 7 above.

[^12]: ${ }^{27}$ Written by Peter Wakeford (Director of Computer Services at LSE in the 1970s)
 ${ }^{28}$ See https://surveyresearch.weebly.com/block-1-from-questionnaire-to-spss-saved-file.html

[^13]: ${ }^{29}$ To subscribe: Send an email to LISTSERV@LISTSERV.UGA.EDU with no subject, no signature, but only the words: SUB SPSSX-L <your name>

