[Commentary by John F Hall]

[Draft only: last updated 4 Novemebr 2017]

John MacInnes

An Introduction to Secondary Data Analysis with IBM SPSS Statistics

(Sage, Dec. 2017)

5.1 Chapter 5 video tutorials (direct link to companion website)

[NB: All video tutorials for chapter 5 are on the same web page and cannot (yet) be disaggregated]

Video 5.1.6: Using the SUM sub-command (6'49")

Exemplar: European Social Survey 2012

SPSS file: ESS6e02 1.sav

Variable to be derived: Index of depression from the 8-item depression inventory

Source variables: fltdpr flteeff slprl wrhpp fltlnl enjlf fltsd cldgng

SPSS commands: COMPUTE¹

IF

FORMATS MEANS

VARIABLE LEVEL CORRELATIONS

Statistical function: SUM

Technical terms: argument, ratio scale, valid value, system missing,

source variable, target variable, numeric expression

Task: Create a new variable: "... the sum of the 8 values on the 8 variables that describe depression."

JM now gets round to doing what I think he should have done in 5.1.5 (and, out of research curiosity, I had already done). He should have started with a simple addition.

[NB: JM keeps running syntax by highlighting the whole command, but as long as the cursor is somewhere inside the command SPSS will run it with Ctr+R or .]

He points out that **[depress]** has range of values 7 to 32 and 1.5% missing cases, but **not** that **[depress]** has 2 superfluous decimal places. He doesn't even show **SUM** for the set of 8.

". . However, there's a small complication: not every respondent has given an answer to all eight of the variables. We want to take account of at least those respondents that have answered . . . at least 7 of the questions." He does not explain why and nothing is shown on the video, but says he is looking for people with at least 7 valid values across all 8 items. The commentary describes the syntax:

compute <new variable> = **SUM.7** (<var_1>² , <var_2>,<var_n>)

He's already extracted the subset of variables: the ones he uses are on lines 200ff in the original file, but are now on lines 14 ff. so he's obviously using a different data set. He uses direct syntax "because it's easier". Using the six negative and the two recoded positive items he constructs the list of variables,

¹ For a brief introduction to the **COMPUTE** command, see <u>3.5.2.4 The COMPUTE command 1 - Attachment to status quo</u> and 3.5.2.7 The COMPUTE command 2 - Sexism

² In SPSS these lists are known as logical arguments: each argument has to be separated by a comma)

but doesn't explain why you have to use **commas**, not spaces: he puts the first comma in and inserts the other commas afterwards.

Watch how **compute** remains **red**

compute depress = sum.7(fltdpr, flteeff, slprl, fltlnl, fltsd, cldgng, enjlf2, wrhpp2)

.. until the full stop goes on the end, when it turns blue.

compute depress = sum.7(fltdpr, flteeff, slprl, fltlnl, fltsd, cldgng, enjlf2, wrhpp2). **freq** depress.

					Cumulative
		Frequency	Percent	Valid Percent	Percent
Valid	7.00	24	.0	.0	.0
	8.00	2530	4.5	4.5	4.6
	9.00	3092	5.4	5.6	10.1
	10.00	5103	9.0	9.2	19.3
	11.00	5716	10.1	10.3	29.6
	12.00	5773	10.2	10.4	39.9
	13.00	5388	9.5	9.7	49.6
	14.00	5176	9.1	9.3	58.9
	15.00	4622	8.1	8.3	67.2
	16.00	3881	6.8	7.0	74.2
	17.00	3214	5.7	5.8	80.0
	18.00	2716	4.8	4.9	84.8
	19.00	1829	3.2	3.3	88.1
	20.00	1481	2.6	2.7	90.8
	21.00	1204	2.1	2.2	93.0
	22.00	1073	1.9	1.9	94.9
	23.00	721	1.3	1.3	96.2
	24.00	699	1.2	1.3	97.4
	25.00	418	.7	.8	98.2
	26.00	324	.6	.6	98.8
	27.00	198	.3	.4	99.1
	28.00	113	.2	.2	99.3
	29.00	154	.3	.3	99.6
	30.00	92	.2	.2	99.8
	31.00	48	.1	.1	99.9
	32.00	82	.1	.1	100.0
	Total	55671	98.0	100.0	
Missing	System	1164	2.0		
Total		56835	100.0		

There is no discussion of whether **sum.7** instead of **sum.8** distorts the depression score.

Because **[cldgng]** is not available for Albanian respondents, JM gives them an **imputed** depression score, multiplying their score derived from the other seven items by a factor of $8 \div 7$, but makes no comparison of **sum.7** with **sum.8**. He finds that 2% missing cases for **SUM.7** rises to 6.2% for **SUM.8** and seems more intent on looking for a culprit country than analysing the structure of depression.

JM gives Albanian respondents the imputed depression score with:

if (missdep = 1) depress = (8/7)*depress.

That's a big assumption, that Albanian respondents, for whom only seven item scores are available, would have got the same depression score if they had answered all 8: it assumes that all items contribute equally to the index. His calculation is not necessarily comparing like with like. He needs to do a different calculation of a 7-item score **excluding [cldgng]** and then compare the two. That way Albania stays in.

compute depress_7 = sum.7(fltdpr, flteeff, slprl, fltlnl, fltsd, enjlf2, wrhpp2)-7.

formats depress_7 (f2.0).

variable labels depress_7 "Depression score without cldgng" . depress_7 /format notable /histogram normal .

means depress_7 by cntry.

depress_7 Depression score without cldgng (Unweighted: unsorted)

(Unweighted: unsorted)				
	Mea			
cntry Country	n	N	Std. Deviation	
AL Albania	8.32	216	3.888	
BE Belgium	4.71	916	3.582	
BG Bulgaria	6.57	608	4.361	
CH Switzerland	4.27	671	3.199	
CY Cyprus	5.13	69	4.231	
CZ Czech Republic	6.03	800	4.143	
DE Germany	5.13	7041	3.432	
DK Denmark	4.02	452	3.109	
EE Estonia	5.90	110	3.714	
ES Spain	5.56	3873	3.929	
FI Finland	4.07	447	3.016	
FR France	5.31	5305	3.886	
GB United Kingdom	4.99	5180	3.677	
HU Hungary	7.09	825	4.105	
IE Ireland	4.20	356	3.643	
IL Israel	5.26	538	3.656	
IS Iceland	4.10	25	3.257	
IT Italy	5.94	4990	3.811	
LT Lithuania	6.46	236	3.418	
NL Netherlands	4.34	1374	3.450	
NO Norway	3.48	402	2.750	
PL Poland	5.10	3143	4.135	
PT Portugal	6.09	888	3.987	
RU Russian Federation	6.51	10800	3.694	
SE Sweden	4.02	784	3.267	
SI Slovenia	4.11	173	3.366	
SK Slovakia	6.03	443	3.418	
UA Ukraine	6.98	3290	4.143	
XK Kosovo	6.94	126	3.464	
Total	5.64	54080	3.838	

depress_7 Depression score without cldgng (Unweighted: sorted in descending order of mean)

(Mea		Std.
cntry Country	n	N	Deviation
AL Albania	8.32	216	3.888
HU Hungary	7.09	825	4.105
UA Ukraine	6.98	3290	4.143
XK Kosovo	6.94	126	3.464
BG Bulgaria	6.57	608	4.361
RU Russian Federation	6.51	10800	3.694
LT Lithuania	6.46	236	3.418
PT Portugal	6.09	888	3.987
CZ Czech Republic	6.03	800	4.143
SK Slovakia	6.03	443	3.418
IT Italy	5.94	4990	3.811
EE Estonia	5.90	110	3.714
ES Spain	5.56	3873	3.929
FR France	5.31	5305	3.886
IL Israel	5.26	538	3.656
DE Germany	5.13	7041	3.432
CY Cyprus	5.13	69	4.231
PL Poland	5.10	3143	4.135
GB United Kingdom	4.99	5180	3.677
BE Belgium	4.71	916	3.582
NL Netherlands	4.34	1374	3.450
CH Switzerland	4.27	671	3.199
IE Ireland	4.20	356	3.643
SI Slovenia	4.11	173	3.366
IS Iceland	4.10	25	3.257
FI Finland	4.07	447	3.016
DK Denmark	4.02	452	3.109
SE Sweden	4.02	784	3.267
NO Norway	3.48	402	2.750
Total	5.64	54080	3.838

The new variables [depress_8] and [depress_7] are appended to the file. Although [depress_7] and [depress_8] were both calculated using COMPUTE, SPSS has set the Level for [depress_7] to Nominal.when it should really be Scale This is something you have to watch out for if you leave everything to the SPSS 'heuristic' algorithm . When creating new variables it is better to set the measurement level yourself.

depress_8	
depress_7	🚜 Nominal

Note that SPSS has still calculated **MEANS** on a **Nominal** variable!!

A comparison is needed of the alternative methods of calculating depression scores:

JM's method:

The IF command over-writes the new variable: better to create another new variable:

if
$$(missdep = 1) depress = (8/7)*depress.$$

Alternative method 1 (automatically eliminates Albania):

compute depress_8 = sum.8(fltdpr, flteeff, slprl, fltlnl, fltsd, cldgng, enjlf2, wrhpp2)-8.

Alternative method 2 (includes Albania):

compute depress 7 = sum.7(fltdpr, flteeff, slprl, fltlnl, fltsd, enjlf2, wrhpp2)-7.

All methods:

formats depress depress2 depress_7 depress_8 (f2.0).

variable labels depress2 "Adjusted depression score"

> /depress_7 "Depression score excluding cldgng (sum.7)" /depress 8 "Depression score including cldgng (sum.8)".

frequencies depress depress_7 depress_8 /format notable /histogram .

Statistics

		Adjusted	Depression	Depression
		depression	score excluding	score including
		score	cldgng (sum.7)	cldgng (sum.8)
N	Valid	55671	54080	53326
	Missing	1164	2754	3508

Adjusted depression score (Albania included)

(Albania included)

Depression excluding [cldgng] Depression including [cldgng] (Albania not included)

.000

1

53326

53326

correlations depress depress_7 depress_8.

Correlations Adjusted Depression Depression depression score excluding score including score cldgng (sum.7) cldgng (sum.8) Pearson Correlation 1 .989 1.000 .000 .000 Sig. (2-tailed) 54080 55671 53326 Pearson Correlation .989 .989 1

54080

.989

.000 5<u>3326</u>

.000

54080

1.000

53326

.000

[depress_7] and [depress_8] are perfectly correlated at 1.000 and correlate 0.989 with JM's tortuously derived and adjusted [depress].

What happens if depression is imputed for all cases, based on depress_7? For countries other than Albania, how does the imputed score relate to the actual score?

End of: 5.1.6: Using the SUM sub-command

Sig. (2-tailed)

Sig. (2-tailed)

Pearson Correlation

Back to: MacInnes (2017)

Adjusted depression score

Depression score excluding

Depression score including

cldgng (sum.7)

cldgng (sum.8)