John MacInnes

An Introduction to Secondary Data Analysis with IBM SPSS Statistics
(Sage, Dec. 2017)
5.1 Chapter 5 video tutorials (direct link to companion website)
[NB: All video tutorials for chapter 5 are on the same web page and cannot (yet) be disaggregated]
Video 5.1.6: Using the SUM sub-command (6'49")

Exemplar:	European Social Survey 2012
SPSS file:	ESS6e02_1.sav
Variable to be derived:	Index of depression from the 8-item depression inventory
Source variables:	fltdpr flteeff slprl wrhpp fltinl enjlf fltsd cldgng
SPSS commands:	COMPUTE
	IF
	FORMATS
	MEANS
	VARIABLE LEVEL
	CORRELATIONS

Statistical function:

Technical terms:

SUM

argument, ratio scale, valid value, system missing, source variable, target variable, numeric expression

Task: Create a new variable: ". . the sum of the 8 values on the 8 variables that describe depression."
JM now gets round to doing what I think he should have done in 5.1.5 (and, out of research curiosity, I had already done). He should have started with a simple addition.
[NB: JM keeps running syntax by highlighting the whole command, but as long as the cursor is somewhere inside the command SPSS will run it with $\mathbf{C t r}+\mathbf{R}$ or

He points out that [depress] has range of values 7 to 32 and 1.5% missing cases, but not that [depress] has 2 superfluous decimal places. He doesn't even show SUM for the set of 8 .
". . However, there's a small complication: not every respondent has given an answer to all eight of the variables. We want to take account of at least those respondents that have answered . . at least 7 of the questions." He does not explain why and nothing is shown on the video, but says he is looking for people with at least 7 valid values across all 8 items. The commentary describes the syntax:

$$
\text { compute <new variable> = SUM. } 7 \text { (<var_1>² , <var_2>,<var_n>) }
$$

He's already extracted the subset of variables: the ones he uses are on lines 200ff in the original file, but are now on lines 14 ff . so he's obviously using a different data set. He uses direct syntax "because it's easier". Using the six negative and the two recoded positive items he constructs the list of variables,

[^0][MacInnes 5.1.6: Using the SUM sub-command]
but doesn't explain why you have to use commas, not spaces: he puts the first comma in and inserts the other commas afterwards,

Watch how compute remains red
compute depress $=$ sum. 7 (fltdpr, flteeff, slprl, fl|lnl, fltsd, cldgng, enj|f2, wrhpp2)
. . until the full stop goes on the end, when it turns blue.
compute depress $=$ sum. 7 (fltdpr, flteeff, slprl, flt|nl, fltsd, cldgng, enj|f2, wrhpp2).
freq depress.

There is no discussion of whether sum. 7 instead of sum. 8 distorts the depression score.
Because [cldgng] is not available for Albanian respondents, JM gives them an imputed depression score, multiplying their score derived from the other seven items by a factor of $8 \div 7$, but makes no comparison of sum. 7 with sum.8. He finds that 2% missing cases for SUM. 7 rises to 6.2% for SUM. 8 and seems more intent on looking for a culprit country than analysing the structure of depression.

JM gives Albanian respondents the imputed depression score with:

$$
\text { if }(\text { missdep }=1) \text { depress }=(8 / 7)^{*} \text { depress. }
$$

That's a big assumption, that Albanian respondents, for whom only seven item scores are available, would have got the same depression score if they had answered all 8: it assumes that all items contribute equally to the index. His calculation is not necessarily comparing like with like. He needs to do a different calculation of a 7 -item score excluding [cldgng] and then compare the two. That way Albania stays in.

```
compute depress_7 = sum.7(fltdpr, flteeff, slprl, fltInl, fltsd, enjlf2, wrhpp2)-7.
formats depress_7 (f2.0).
variable labels depress_7 "Depression score without cldgng".
frequencies
means
depress_7 /format notable /histogram normal .
depress_7 by cntry.
```

depress_7 Depression score without cldgng (Unweighted: unsorted)

cntry Country	Mea n	N	Std. Deviation
AL Albania	8.32	216	3.888
BE Belgium	4.71	916	3.582
BG Bulgaria	6.57	608	4.361
CH Switzerland	4.27	671	3.199
CY Cyprus	5.13	69	4.231
CZ Czech Republic	6.03	800	4.143
DE Germany	5.13	7041	3.432
DK Denmark	4.02	452	3.109
EE Estonia	5.90	110	3.714
ES Spain	5.56	3873	3.929
FI Finland	4.07	447	3.016
FR France	5.31	5305	3.886
GB United Kingdom	4.99	5180	3.677
HU Hungary	7.09	825	4.105
IE Ireland	4.20	356	3.643
IL Israel	5.26	538	3.656
IS Iceland	4.10	25	3.257
IT Italy	5.94	4990	3.811
LT Lithuania	6.46	236	3.418
NL Netherlands	4.34	1374	3.450
NO Norway	3.48	402	2.750
PL Poland	5.10	3143	4.135
PT Portugal	6.09	888	3.987
RU Russian Federation	6.51	10800	3.694
SE Sweden	4.02	784	3.267
SI Slovenia	4.11	173	3.366
SK Slovakia	6.03	443	3.418
UA Ukraine	6.98	3290	4.143
XK Kosovo	6.94	126	3.464
Total	5.64	54080	3.838

depress_7 Depression score without cldgng (Unweighted: sorted in descending order of mean)

cntry Country	Mea n	N	Std. Deviation
AL Albania	8.32	216	3.888
HU Hungary	7.09	825	4.105
UA Ukraine	6.98	3290	4.143
XK Kosovo	6.94	126	3.464
BG Bulgaria	6.57	608	4.361
RU Russian Federation	6.51	10800	3.694
LT Lithuania	6.46	236	3.418
PT Portugal	6.09	888	3.987
CZ Czech Republic	6.03	800	4.143
SK Slovakia	6.03	443	3.418
IT Italy	5.94	4990	3.811
EE Estonia	5.90	110	3.714
ES Spain	5.56	3873	3.929
FR France	5.31	5305	3.886
IL Israel	5.26	538	3.656
DE Germany	5.13	7041	3.432
CY Cyprus	5.13	69	4.231
PL Poland	5.10	3143	4.135
GB United Kingdom	4.99	5180	3.677
BE Belgium	4.71	916	3.582
NL Netherlands	4.34	1374	3.450
CH Switzerland	4.27	671	3.199
IE Ireland	4.20	356	3.643
SI Slovenia	4.11	173	3.366
IS Iceland	4.10	25	3.257
FI Finland	4.07	447	3.016
DK Denmark	4.02	452	3.109
SE Sweden	4.02	784	3.267
NO Norway	3.48	402	2.750
Total	5.64	54080	3.838

The new variables [depress_8] and [depress_7] are appended to the file. Although [depress_7] and [depress_8] were both calculated using COMPUTE, SPSS has set the Level for [depress_7] to Nominal.when it should really be Scale This is something you have to watch out for if you leave everything to the SPSS 'heuristic' algorithm. When creating new variables it is better to set the measurement level yourself.

depress_8	Scale
depress_7	\& Nominal

Note that SPSS has still calculated MEANS on a Nominal variable !!

A comparison is needed of the alternative methods of calculating depression scores:
JM's method:
compute depress $=$ sum. 7 (fltdpr, flteeff, slprl, fltInl, fltsd, cldgng, enj|f2, wrhpp2).
if $\quad($ missdep $=1)$ depress $=(8 / 7)^{*}$ depress.
The IF command over-writes the new variable: better to create another new variable:
if $\quad($ missdep $=1)$ depress2 $=(8 / 7)^{*}$ depress.
Alternative method 1 (automatically eliminates Albania):
compute depress_8 = sum.8(fltdpr, flteeff, slprl, fltinl, fltsd, cldgng, enj|f2, wrhpp2)-8.
Alternative method 2 (includes Albania):
compute depress_7 = sum.7(fltdpr, flteeff, slprl, flt|nl, fltsd, enj|f2, wrhpp2)-7.
All methods:
formats depress depress2 depress_7 depress_8 (f2.0).
variable labels depress2 "Adjusted depression score"
/depress_7 "Depression score excluding cldgng (sum.7)"
/depress_8 "Depression score including cldgng (sum.8)".
depress depress_7 depress_8/format notable /histogram .

	Statistics			Adjusted depression score
N	Depression score excluding cldgng (sum.7)	Depression score including cldgng (sum.8)		
N	Valid	55671	54080	53326
	Missing	1164	2754	3508

correlations depress depress_7 depress_8.

Correlations

Correlations				
		Adjusted depression score	Depression score excluding cldgng (sum.7)	Depression score including cldgng (sum.8)
Adjusted depression score	Pearson Correlation	1	. 989	1.000
	Sig. (2-tailed)		. 000	. 000
	N	55671	54080	53326
Depression score excluding cldgng (sum.7)	Pearson Correlation	. 989	1	. 989
	Sig. (2-tailed)	. 000		. 000
	N	54080	54080	53326
Depression score including cldgng (sum.8)	Pearson Correlation	1.000	. 989	1
	Sig. (2-tailed)	. 000	. 000	
	N	53326	53326	53326

[depress_7] and [depress_8] are perfectly correlated at 1.000 and correlate 0.989 with JM's tortuously derived and adjusted [depress].

What happens if depression is imputed for all cases, based on depress_7? For countries other than Albania, how does the imputed score relate to the actual score?

End of: 5.1.6: Using the SUM sub-command
Back to: MacInnes (2017)

[^0]: ${ }^{1}$ For a brief introduction to the COMPUTE command, see 3.5.2.4 The COMPUTE command 1 - Attachment to status quo and 3.5.2.7 The COMPUTE command 2 - Sexism

 2 In SPSS these lists are known as logical arguments: each argument has to be separated by a comma)

