## John MacInnes

An Introduction to Secondary Data Analysis with IBM SPSS Statistics
(Sage, 2017)

## Chapter 4: Getting Started with SPSS

Chapter 4 video tutorials (direct link to companion website)
[NB: All video tutorials for chapter 4 are on the same web page and cannot (yet) be disaggregated]

### 4.1.1: Overview of video tutorials 1 -6

## Warning!

All the video tutorials for chapter 4 are on the same (very sensitive) webpage and can be accidentally triggered by stray mouse pointers. If you are not careful you can have two or more simultaneous commentaries playing and can't always tell which commentary relates to which video. It would be far better to split all these videos across separate pages, but this not yet possible.

All the SPSS syntax for all the analyses is in the same Syntax Editor, which can get very complicated and possibly confusing. The syntax needs to be split into separate SPSS *.sps files for each analysis.

The following notes assume you are familiar with copy/paste, highlighting and dragging with left mouse down and that you have access to a licenced copy of SPSS. They are based on communications with John MacInnes and Sage when I first accessed the companion website and are offered not as criticism, but as constructive supplementary comments intended to help guide users through Chapter 4.

The rationale for the order of video topics is not particularly evident: in fact the chapters can be read in almost any order without losing pedagogic efficacy. Some topics could do with much more preliminary explanation of what is being done and why. However, at over 300 pages the book is already quite big and additional material could well make it unwieldy.

## Contents:

Video 1: Starting SPSS
Video 2: Frequencies

## Video 3: Crosstabs

Video 4: Histogram
Video 5: Confidence Intervals
Video 6: Crosstabs \& chi-square

## Variable(s) used in examples

[None: demonstration only]
Country of survey
Country of survey by whether born there
Age of respondent
"Gays and lesbians free to live life as they wish"
"Gays and lesbians free to live life as they wish" by gender, age group and religion

## Contents (contd.)

Appendix 1: Example of CTABLES

Appendix 2: Elaboration

Demonstration by JFH of CTABLES elaborating earnings from paid work by sex, controlling for hours worked (data from the British Social Attitudes Survey) Syntax for same data as exercise 6

SPSS macro for elaboration: syntax by JFH of "Gays and lesbians free to live life as they wish" by gender, controlling for religion. Exercise to complete blank table

Video 1: Starting SPSS


Quick tour through SPSS with gentle Scottish voice-over by Maclnnes himself, demonstrating SPSS opening screen, Data Editor and Output Viewer windows, opening an SPSS saved file, different data types (numeric and string) using Edit >> Options to make your screen presentation the same as his, displaying the Data Editor in Variable View or Data View, ${ }^{1}$ changing the displayed attributes of variables with View >> Customise Variable View, changing the font size, dragging column dividers (to reveal full contents of cells) and a look at the Output Viewer.

The author explains that each row of the matrix contains the data for all variables of a single case, each column contains all values for a single variable and each cell contains the value of a single variable for a single case.

His approach to this vocabulary is similar to the scheme I use for my teach-yourself course Survey Analysis Workshop (SPSS) but my course starts much further back in the data capture process, with a chalk-board exercise on the nature of survey data, listing a few simple questions, suggesting shorthand names to be used as column headers, entering rows of imaginary people and single word summaries of their responses, converting the answers from string to numeric, gradually building up a research vocabulary (cases, variables, values) and explaining that we have just created a flat data matrix of the type used by SPSS and Excel. (See 1.1.2 Introduction to survey data, p.2)

[^0]During registration for the first class, students were given a short self-completion questionnaire ${ }^{2}$ with some questions replicated from the British Social Attitudes Survey, some about themselves and their experience of surveys and computers. After a brief explanation of the Aladdin's cave of data stored on the Vax mainframe (no PCs or Macs in those days) and introduction to some simple commands for the Vax Management System (VMS: explained as having to learn the Turkish equivalent of Open Sesame") and the file editor EDT (explained as having to learn Greek to access the goodies inside) they got a coffee break before being introduced to the visual display units (VDUs) in the computer lab and obtain their individual passwords to access their personal disk area on the Vax mainframe. They were then asked to copy a short pre-pared SPSS syntax file from the Faculty disk area to their own disk area and run it on the Vax. Everyone got some output (though the few spares came in handy) and had something to discuss before we opened the Bulgarian wine.

For the final three years of the course (1990-1992), two of my (1990) $2^{\text {nd }}$ year undergraduates ${ }^{3}$ on the BSocSci (Social Research) were employed as demonstrators for the lab sessions.

In the next session students were asked to code the data from 10 questionnaires and transfer them to a 10 -line data sheet, one line per questionnaire. They then had to type these 10 lines into an 80-column ASCII file, prior to entering them into SPSS via DATA LIST. ${ }^{4}$

This was my introduction to them of "learning by doing": it was very effective and gave students with little or no previous experience of surveys or computers their first appreciation of the nature of survey data.

Video 2: Frequency tables
With file ESS6_Practice.sav open:

|  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Elie Edit yew Data Iranstom Anayze DirectMarketing graphs ytuites Extensions Window Help |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  | Name | Label | Values | Missing | Type | Measure |
| 1 | idno | Respondent's identification number | None | None | Numeric | \& Nominal |
| 2 | cntry | Country | (AL, Abania). | None | String | dill Ordinal |
| 3 | mot | TV watching, total time on average weekday | [ 0 , No time at all) | 77, 88, 99 | Numeric | dill Ordinal |
| 4 | points | How interested in politics | (1, Very interested). | 7, 8, 9 | Numeric | dill Ordinal |
| 5 | trstprt | Trust in political parties | [ 0 , No trust at all) | 77, 88, 99 | Numeric | Scale |
| 6 | Irscale | Placement on left right scale | (0, Leff) | 77, 88, 99 | Numeric | dill Ordinal |
| 7 | freehms | Gays and lesbians free to live life as they wish | [1, Agree strongly) | 7,8,9 | Numeric | dil Ordinal |
| 8 | rigblg | Belonging to particular religion or denomination | (1, Yes). | 7,8,9 | Numeric | \& Nominal |
| 9 | rigdnm | Reilion or denomination belonging to at present | (1, Roman Catholic) | 99, 77, 66 | Numeric | \& Nominal |
| 10 | brnentr | Born in country | ( $1, \mathrm{Yes}$ ) | 7,8,9 | Numeric | \& Nominal |
| 11 | physact | Physically active for 20 minutes or longer last 7 days | ( 0, No days) | 77, 88, 99 | Numeric | dild Ordinal |
| 12 | hhmmb | Number of people living regularly as member of household | [77, Refusa]. | 77, 88, 99 | Numeric | Scale |
| 13 | gndr | Gender | (1, Male). | 9 | Numeric | \& Nominal |
| 14 | agea | Age of respondent, calculated | [ 999, Not avalable) | 999 | Numeric | - Scale |
| 15 | maritab | Legal marital status, post coded | (1, Legally married). | 77, 88, 99 | Numeric | \& Nominal |
| 16 | mnactic | Main activity, last 7 days. All respondents. Post coded | (1, Paid work). | 66-99 | Numeric | Q Nominal |
| 17 | wkhtot | Total hours normally worked per week in main job overtime included | (666, Not applicable) | 666-999 | Numeric | - Scale |
| 18 | dweight | Design weight | None | None | Numeric | - Scale |
| 19 | pspwght | Post-stratification weight including design weight | None | None | Numeric | - Scale |
| 20 | pweight | Population size weight | None | None | Numeric | - Scale |
| 21 |  |  |  |  |  |  |
| Data Verw variable View |  |  |  |  |  |  |
| IBM SPSS Statatcs Processor Is ready $\quad$ Unicode ON |  |  |  |  |  |  |

[^1]MacInnes produces a frequency count for country of survey [cntry] by using the GUI menu:
Analyze >> Descriptive Statistics >> Frequencies

| M SPSS Statistics Data Editor |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Analyze |  | Direct Marketing | Graphs | Utilities |  | Extensions | Winc |
| $\square$ | Reports |  |  | , |  |  |  |
|  | Desc | ptive Statistics |  | , |  | requencies |  |
| n | Table |  |  | , |  | escriptives. |  |

In left pane highlight $a$ Country [cntry] and click $\rightarrow$ to transfer to right pane


To generate syntax and copy it to your Syntax Editor press

```
Paste
```


## Syntax generated:

FREQUENCIES VARIABLES=cntry
/ORDER=ANALYSIS.
To see the frequency table press

## Frequency output generated:

| Statistics |  |  |
| :--- | :--- | ---: |
| Country |  |  |
| N | Valid | 54673 |
|  | Missing | 0 |

There are 54673 countries and no missing cases for country.
[MacInnes 4.1.1: Overview of video tutorials 1-6]

## Frequency table generated

|  | Country |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Frequency | Percent | Valid Percent | Cumulative Percent |
| Valid | Albania | 1201 | 2.2 | 2.2 | 2.2 |
|  | Belgium | 1869 | 3.4 | 3.4 | 5.6 |
|  | Bulgaria | 2260 | 4.1 | 4.1 | 9.7 |
|  | Switzerland | 1493 | 2.7 | 2.7 | 12.5 |
|  | Cyprus | 1116 | 2.0 | 2.0 | 14.5 |
|  | Czech Republic | 2009 | 3.7 | 3.7 | 18.2 |
|  | Germany | 2958 | 5.4 | 5.4 | 23.6 |
|  | Denmark | 1650 | 3.0 | 3.0 | 26.6 |
|  | Estonia | 2380 | 4.4 | 4.4 | 31.0 |
|  | Spain | 1889 | 3.5 | 3.5 | 34.4 |
|  | Finland | 2197 | 4.0 | 4.0 | 38.5 |
|  | France | 1968 | 3.6 | 3.6 | 42.1 |
|  | United Kingdom | 2286 | 4.2 | 4.2 | 46.2 |
|  | Hungary | 2014 | 3.7 | 3.7 | 49.9 |
|  | Ireland | 2628 | 4.8 | 4.8 | 54.7 |
|  | Israel | 2508 | 4.6 | 4.6 | 59.3 |
|  | Iceland | 752 | 1.4 | 1.4 | 60.7 |
|  | Italy | 960 | 1.8 | 1.8 | 62.4 |
|  | Lithuania | 2109 | 3.9 | 3.9 | 66.3 |
|  | Netherlands | 1845 | 3.4 | 3.4 | 69.7 |
|  | Norway | 1624 | 3.0 | 3.0 | 72.6 |
|  | Poland | 1898 | 3.5 | 3.5 | 76.1 |
|  | Portugal | 2151 | 3.9 | 3.9 | 80.0 |
|  | Russian Federation | 2484 | 4.5 | 4.5 | 84.6 |
|  | Sweden | 1847 | 3.4 | 3.4 | 88.0 |
|  | Slovenia | 1257 | 2.3 | 2.3 | 90.3 |
|  | Slovakia | 1847 | 3.4 | 3.4 | 93.6 |
|  | Ukraine | 2178 | 4.0 | 4.0 | 97.6 |
|  | Kosovo | 1295 | 2.4 | 2.4 | 100.0 |
|  | Total | 54673 | 100.0 | 100.0 |  |

Again a matter of pedagogy perhaps, but the GUI route takes a lot longer than simply opening a new Syntax Editor and typing in:
freq cntry.
. . to get exactly the same table.
MacInnes does this in the video, but he also explains that the data need to be weighted, and why, then runs the following:

WEIGHT BY pweight.
FREQ cntry.
This video repays repeated watching.

With his emphasis in the book on using syntax I was rather hoping he would use:
File >> New >> Syntax
to create a new Syntax Editor and get users to type directly into it. (He actually does this much later in the book.)

One thing that really bugs me about the FREQUENCIES command is that it always displays Cumulative Percent, even for categorical variables, when all I really need is Frequency and Valid percent, often only the latter. It would be nice if there were options to choose which columns to display, but for now I can edit the Pivot Table to get rid of the Percent and Cumulative Percent columns, leaving only Frequency and Valid Percent.

|  |  | Frequency | Valid Percent |
| ---: | :--- | ---: | ---: |
| Valid | AL Albania | 1201 | 2.2 |
|  | BE Belgium | 1869 | 3.4 |
| BG Bulgaria | 2260 | 4.1 |  |
| CH Switzerland | 1493 | 2.7 |  |
| CY Cyprus | 1116 | 2.0 |  |
| CZ Czech Republic | 2009 | 3.7 |  |
| DE Germany | 2958 | 5.4 |  |
| DK Denmark | 1650 | 3.0 |  |
| EE Estonia | 2380 | 4.4 |  |
| ES Spain | 1889 | 3.5 |  |
| FI Finland | 2197 | 4.0 |  |
| FR France | 1968 | 3.6 |  |
| GB United Kingdom | 2286 | 4.2 |  |
| HU Hungary | 2014 | 3.7 |  |
| IE Ireland | 2628 | 4.8 |  |
| IL Israel | 2508 | 4.6 |  |
| IS Iceland | 752 | 1.4 |  |
| IT Italy | 960 | 1.8 |  |
| LT Lithuania | 2109 | 3.9 |  |
| NL Netherlands | 1845 | 3.4 |  |
| NO Norway | 1624 | 3.0 |  |
| PL Poland | 1898 | 3.5 |  |
| PT Portugal | 2151 | 3.9 |  |
| RU Russian Federation | 2484 | 4.5 |  |
| SE Sweden | 1847 | 3.4 |  |
| SI Slovenia | 1257 | 2.3 |  |
| SK Slovakia | 1847 | 3.4 |  |
| UA Ukraine | 2178 | 4.0 |  |
| XK Kosovo | 1295 | 2.4 |  |
| Total | 54673 | 100.0 |  |
|  |  |  |  |

. . but it's quicker and easier with CTABLES. ${ }^{5}$

[^2]Video 3: Crosstab brnentr x cntry


Again Maclnnes uses the GUI to produce a two-way contingency table of country of survey [cntry] by whether respondents were born there [brnentr] this time with:

Analyze >> Descriptive Statistics >> Crosstabs

|  | Analyze | Direct Marketing | Graphs | Utilities |  | Extensions | Wir |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Reports |  |  | , |  | IIIIT | ar |
|  | Descriptive Statistics |  |  | , | 圆 Erequencies... |  |  |
|  | Tables |  |  | , | [1. Descriptives... |  |  |
|  | Compare Means |  |  | , | \& Explore. |  |  |
|  | General Linear Model |  |  |  | \% Crosstabs |  |  |
| ng | Generalged Linear Models |  |  |  | E |  |  |

Enter [cntry] in the Row(s) pane,
[brnentr] in the Column(s) pane
. . and ask for Row \%


Click on Continue then OK to produce the following table:

## Country *Born in country Crosstabulation

\% within Country

|  | 兂 | Born in country |  | Total |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Yes | No |  |
| Country | Albania | 99.3\% | 0.7\% | 100.0\% |
|  | Belgium | 86.0\% | 14.0\% | 100.0\% |
|  | Bulgaria | 99.4\% | 0.6\% | 100.0\% |
|  | Switzerland | 77.5\% | 22.5\% | 100.0\% |
|  | Cyprus | 88.8\% | 11.2\% | 100.0\% |
|  | Czech Republic | 97.4\% | 2.6\% | 100.0\% |
|  | Germany | 89.9\% | 10.1\% | 100.0\% |
|  | Denmark | 93.1\% | 6.9\% | 100.0\% |
|  | Estonia | 83.7\% | 16.3\% | 100.0\% |
|  | Spain | 88.5\% | 11.5\% | 100.0\% |
|  | Finland | 95.7\% | 4.3\% | 100.0\% |
|  | France | 89.4\% | 10.6\% | 100.0\% |
|  | United Kingdom | 88.4\% | 11.6\% | 100.0\% |
|  | Hungary | 98.8\% | 1.2\% | 100.0\% |
|  | Ireland | 85.4\% | 14.6\% | 100.0\% |
|  | Israel | 68.8\% | 31.2\% | 100.0\% |
|  | Iceland | 94.4\% | 5.6\% | 100.0\% |
|  | Italy | 92.7\% | 7.3\% | 100.0\% |
|  | Lithuania | 97.1\% | 2.9\% | 100.0\% |
|  | Netherlands | 90.9\% | 9.1\% | 100.0\% |
|  | Norway | 87.5\% | 12.5\% | 100.0\% |
|  | Poland | 98.8\% | 1.2\% | 100.0\% |
|  | Portugal | 93.9\% | 6.1\% | 100.0\% |
|  | Russian Federation | 94.0\% | 6.0\% | 100.0\% |
|  | Sweden | 87.3\% | 12.7\% | 100.0\% |
|  | Slovenia | 91.0\% | 9.0\% | 100.0\% |
|  | Slovakia | 98.3\% | 1.7\% | 100.0\% |
|  | Ukraine | 92.1\% | 7.9\% | 100.0\% |
|  | Kosovo | 94.4\% | 5.6\% | 100.0\% |
| Total |  | 90.8\% | 9.2\% | 100.0\% |

Macinnes says the countries are listed in alphabetical order: it's not immediately obvious how, but it's because the international abbreviations used as values are not shown. (See table on page 5)

Clicking on Paste produces the following syntax:

## CROSSTABS

/TABLES=cntry BY brnentr /FORMAT=AVALUE TABLES /CELLS=ROW /COUNT ROUND CELL.
. . which can be done more simply by typing:
crosstabs entry by brnentr /cells row .
. . in the Syntax Editor.
[MacInnes 4.1.1: Overview of video tutorials 1-6]
MacInnes then demonstrates how the countries can be re-organised in descending order of the percentage born in the country where they now live.

Double click on the table to enter Pivot mode: highlight the cells in the Yes column (but not the total cell)

## Sort Rows >> Descending



## Country * Born in country Crosstabulation

\% within Country

| din |  | Born in country |  | Total |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Yes | No |  |
| Country | Bulgaria | 99.4\% | 0.6\% | 100.0\% |
|  | Albania | 99.3\% | 0.7\% | 100.0\% |
|  | Poland | 98.8\% | 1.2\% | 100.0\% |
|  | Hungary | 98.8\% | 1.2\% | 100.0\% |
|  | Slovakia | 98.3\% | 1.7\% | 100.0\% |
|  | Czech Republic | 97.4\% | 2.6\% | 100.0\% |
|  | Lithuania | 97.1\% | 2.9\% | 100.0\% |
|  | Finland | 95.7\% | 4.3\% | 100.0\% |
|  | Iceland | 94.4\% | 5.6\% | 100.0\% |
|  | Kosovo | 94.4\% | 5.6\% | 100.0\% |
|  | Russian Federation | 94.0\% | 6.0\% | 100.0\% |
|  | Portugal | 93.9\% | 6.1\% | 100.0\% |
|  | Denmark | 93.1\% | 6.9\% | 100.0\% |
|  | Italy | 92.7\% | 7.3\% | 100.0\% |
|  | Ukraine | 92.1\% | 7.9\% | 100.0\% |
|  | Slovenia | 91.0\% | 9.0\% | 100.0\% |
|  | Netherlands | 90.9\% | 9.1\% | 100.0\% |
|  | Germany | 89.9\% | 10.1\% | 100.0\% |
|  | France | 89.4\% | 10.6\% | 100.0\% |
|  | Cyprus | 88.8\% | 11.2\% | 100.0\% |
|  | Spain | 88.5\% | 11.5\% | 100.0\% |
|  | United Kingdom | 88.4\% | 11.6\% | 100.0\% |
|  | Norway | 87.5\% | 12.5\% | 100.0\% |
|  | Sweden | 87.3\% | 12.7\% | 100.0\% |
|  | Belgium | 86.0\% | 14.0\% | 100.0\% |
|  | Ireland | 85.4\% | 14.6\% | 100.0\% |
|  | Estonia | 83.7\% | 16.3\% | 100.0\% |
|  | Switzerland | 77.5\% | 22.5\% | 100.0\% |
|  | Israel | 68.8\% | 31.2\% | 100.0\% |
| Total |  | 90.8\% | 9.2\% | 100.0\% |

Comment: I've been using SPSS since 1972 and this was the first time I'd used this facility, Never too late to learn something new.

## Video 4: Histogram agea

Again uses the GUI to produce a frequency count of [agea] "Age of respondent, calculated".
This is one occasion where it is legitimate to produce Cumulative percent as it can be used to mark suitable cutting points for creating age groups. JM also produces quite a dense histogram and shows how it can be simplified by widening the intervals from single years to 15 years.

## Video 5: Freehms \& Cls

Demonstrates a frequency count for [freehms] "Gays and lesbians free to live life as they wish" and explains that the \%\% in the table are only an estimate, based on a sample, of the parameter for the population from which the sample is drawn. He then shows an Excel file in which confidence intervals for the estimates are calculated.

## Video 6: Crosstabs \& chi-square

Uses the GUI to produce two-way contingency tables of [freehms] "Gays and lesbians free to live life as they wish" tabulated by [rlgblg] "Belonging to particular religion or denomination" [gndr] "Gender" and [Irscale] "Placement on left right scale".

Shows the syntax generated by SPSS from the GUI using Analyze >> Descriptive Statistics >> Crosstabs

```
CROSSTABS
/TABLES=freehms BY rlgblg gndr rlgdnm Irscale
/FORMAT=AVALUE TABLES
/STATISTICS=CHISQ PHI GAMMA
/CELLS=COUNT COLUMN
/COUNT ROUND CELL.
```

but then shows how the same analysis can be obtained by directly written (abbreviated) syntax:
cross freehms by rlgblg gndr rigdnm Irscale/cel row/sta chi phi gamma.
To be honest, I think it's far too early to introduce statistics like chi-square and the phi and gamma coefficients: students need time to assimilate the idea of contingency tables by experimenting with different independent variables to compare percentages and see what effect (if any) they have on attitudes.

Assuming $\mathrm{X}=$ <independent variable> and $\mathrm{Y}=$ <dependent variable> MacInnes follows what I call the "accountancy" convention, putting the dependent variable in the rows, the independent variable in the columns, and asking for row percent so that the columns add up to $100 \%$ (as preferred by accountants, statisticians and psychologists)
crosstabs <dependent variable> by <independent variable> /cells colpct.
Following a common "sociological" convention, I would normally put the dependent variable in the columns, the independent variable in the rows and ask for row\% so that the rows add up to $100 \%$.
crosstabs <independent variable> by <independent variable> /cells rowpct.
That makes it much easier to compare percentages within categories of the independent variable, but this is clearly a matter of taste.
[MacInnes 4.1.1: Overview of video tutorials 1-6]
When X has only 2 categories, as in

## crosstabs freehms BY rlgblg gndr /cells colpct .

. . comparison of \%\% is relatively easy across rows

|  | Crosstab |  | rlgblg Belonging to particular religion or denomination |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
|  |  |  | 1 Yes | 2 No |  |
| Freehms | 1 Agree strongly | Count | 7572 | 7875 | 15447 |
|  |  | \% within rlgblg | 23.7\% | 37.9\% | 29.3\% |
| Gays and lesbians free to live life as they wish | 2 Agree | Count | 11026 | 6532 | 17558 |
|  |  | \% within rlgblg | 34.5\% | 31.5\% | 33.3\% |
|  | 3 Neither agree nor disagree | Count | 5186 | 2582 | 7768 |
|  |  | \% within rlgblg | 16.2\% | 12.4\% | 14.7\% |
|  | 4 Disagree | Count | 3824 | 1816 | 5640 |
|  |  | \% within rlgblg | 12.0\% | 8.7\% | 10.7\% |
|  | 5 Disagree strongly | Count | 4339 | 1956 | 6295 |
|  |  | \% within rlgblg | 13.6\% | 9.4\% | 11.9\% |
| Total |  | Count | 31947 | 20761 | 52708 |
|  |  | \% within | 100.0\% | 100.0\% | 100.0\% |

.. but when X has many categories, it becomes much more difficult as in
crosstabs freehms BY rlgdnm
/cells colpct .


I also tend to leave out the counts as they just clutter up the tables, but this means there is no N shown as a base for \%.

In fact CTABLES can produce much clearer and less cluttered output with row\% in the cells and base Ns in the Total column:

|  |  | freehms Gays and lesbians free to live life as they wish |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 Agree strongly Row N \% | 2 Agree Row N \% | 3 Neither agree nor disagree Row N \% | 4 Disagree Row N \% | 5 Disagree strongly Row N \% | Total Count |
| gndr Gender | 1 Male | 26.1\% | 34.4\% | 14.9\% | 11.8\% | 12.8\% | 25274 |
|  | 2 Female | 31.8\% | 32.0\% | 14.8\% | 9.9\% | 11.5\% | 27991 |


|  | freehms Gays and lesbians free to live life as they wish |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 Agree strongly Row N \% | 2 Agree Row N \% | 3 Neither agree nor disagree Row N \% | 4 Disagree Row N \% | 5 Disagree strongly Row N \% | Total Count |
| rlgblg Belonging to 1 Yes | 23.7\% | 34.5\% | 16.2\% | 12.0\% | 13.6\% | 31947 |
| particular religion or 2 No denomination | 37.9\% | 31.5\% | 12.4\% | 8.7\% | 9.4\% | 20762 |

This orientation makes it easier to interpret and to compute epsilons (percentage point differences).

The syntax for CTABLES can become quite complicated for newbies, but see Appendix 1 for a worked example.

When the independent variable is dichotomous (has only two categories) the epsilons can be used for a special analysis technique known as Elaboration (see 3.2 Three (or more) variables and the worked example in Appendix 2). .

## End of: 4.1.1: Overview of video tutorials 1 - 6

Back to: MacInnes (2017)

## Appendix 1: Example of CTABLES

For counts only:

## ctables /tab cntry.

To get valid percent and totals it's a bit more complicated: I had to use the GUI, but at least I didn't get the pesky cumulative percent

Syntax generated by

## Paste

## CTABLES

/VLABELS VARIABLES=cntry DISPLAY=DEFAULT
/TABLE cntry [COUNT 40.0, COLPCT.COUNT F40.1]
/CATEGORIES VARIABLES=cntry ORDER=A KEY=VALUE EMPTY=|NCLUDE TOTAL = YES

|  |  | Count |
| ---: | :--- | ---: |
| Country | Albania | 1201 |
|  | Belgium | 1869 |
|  | Bulgaria | 2260 |
|  | Switzerland | 1493 |
|  | Cyprus | 1116 |
| Czech Republic | 2009 |  |
| Germany | 2958 |  |
|  | Denmark | 1650 |
| Estonia | 2380 |  |
| Spain | 1889 |  |
| Finland | 2197 |  |
| France | 1968 |  |
|  | United Kingdom | 2286 |
| Hungary | 2014 |  |
|  | Ireland | 2628 |
|  | Israel | 2508 |
|  | Iceland | 752 |
| Italy | 960 |  |
|  | Lithuania | 2109 |
|  | Netherlands | 1845 |
|  | Norway | 1624 |
|  | Poland | 1898 |
|  | Portugal | 2151 |
|  | Russian Federation | 2484 |
| Sweden | 1847 |  |
|  | Slovenia | 1257 |
|  | Slovakia | 1847 |
|  | Ukraine | 2178 |
| Kosovo | 1295 |  |


|  | Count | Column <br> $\mathrm{N} \%$ |
| :--- | ---: | ---: |
| Country | Albania | 1201 |
| Belgium | 1869 | 2.2 |
|  | Bulgaria | 2260 |
| Switzerland | 1493 | 4.1 |
|  | Cyprus | 1116 |
| Czech Republic | 2009 | 2.0 |
| Germany | 2958 | 3.7 |
| Denmark | 1650 | 3.4 |
| Estonia | 2380 | 4.4 |
| Spain | 1889 | 3.5 |
| Finland | 2197 | 4.0 |
| France | 1968 | 3.6 |
| United Kingdom | 2286 | 4.2 |
| Hungary | 2014 | 3.7 |
| Ireland | 2628 | 4.8 |
| Israel | 2508 | 4.6 |
| Iceland | 752 | 1.4 |
| Italy | 960 | 1.8 |
| Lithuania | 2109 | 3.9 |
| Netherlands | 1845 | 3.4 |
| Norway | 1624 | 3.0 |
| Poland | 1898 | 3.5 |
| Portugal | 2151 | 3.9 |
| Russian Federation | 2484 | 4.5 |
| Sweden | 1847 | 3.4 |
| Slovenia | 1257 | 2.3 |
| Slovakia | 1847 | 3.4 |
| Ukraine | 2178 | 4.0 |
| Kosovo | 1295 | 2.4 |
| Total | 54673 | 100.0 |
|  |  |  |

My tutorial 3.2.1.4 Elaboration 4 (Income differences 2009-2014 CTABLES) has fully worked examples from the British Social Attitudes Survey (cumulative waves 2009-2014) using CTABLES to examine the model:
$\mathbf{X} \rightarrow \mathbf{Y} . \mathbf{T}$ (the effect of $\mathbf{X}$ on $\mathbf{Y}$ controlling for $\mathbf{T}$ ) where:
$\mathrm{Y}=$ Dependent variable
X = Independent variable
$\mathrm{T}=$ Test variable(s)
Dependent variable Y: Earnings from paid work (Quartiles)
Independent variable X: Sex of respondent
Test variable T:
Hours worked (Under 30, 30+)

## ctables

/TABLE sex BY earngrp [ROWPCT.COUNT f5.1 "\%" totals [count " $\mathrm{n}=100 \%$ "]] /CATEGORIES VARIABLES= earngrp TOTAL=YES
/TABLE workmode BY earngrp [ROWPCT.COUNT f5.1 "\%" totals [count "n= 100\%"]] /CATEGORIES VARIABLES= earngrp TOTAL=YES .

|  | earngrp Quartile group of R's earnings from paid work |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 Q1 | 2 Q2 | 3 Q3 | 4 Q4 | Total |
|  | \% | \% | \% | \% | $\mathrm{n}=100 \%$ |
| Rsex Person 1 SEX | 13.0 | 25.9 | 29.0 | 32.1 | 4299 |
|  | 35.6 | 29.3 | 21.2 | 13.9 | 4490 |
| Epsilon | -22.6 | -3.4 | +7.8 | +18.2 |  |


|  | earngrp Quartile group of R's earnings from paid work |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 Q1 | 2 Q2 | 3 Q3 | 4 Q4 | Total |
|  | \% | \% | \% | \% | $\mathrm{n}=100 \%$ |
| workmode R working full-- 1 Full time <br> or part-time 2 Part time | $\begin{aligned} & 10.5 \\ & 59.3 \end{aligned}$ | $\begin{aligned} & 29.9 \\ & 23.8 \\ & \hline \end{aligned}$ | $\begin{aligned} & 31.2 \\ & 10.5 \end{aligned}$ | 28.3 6.5 | $\begin{aligned} & \hline 5459 \\ & 1999 \\ & \hline \end{aligned}$ |

$\begin{array}{lllll}\text { Epsilon } & \mathbf{- 4 8 . 8} & \mathbf{+ 6 . 1} & \mathbf{+ 2 0 . 7} & \mathbf{+ 2 1 . 8}\end{array}$

|  |  | workmode R working full- or part-time |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 Full time |  |  |  |  | 2 Part time |  |  |  |  |
|  |  | earngrp Quartile group of R's earnings frompaid work |  |  |  |  | earngrp Quartile group of R's earnings from paid work |  |  |  |  |
|  |  | 1 Q1 | 2 Q2 | 3 Q3 | 4 Q4 | Total | 1 Q1 | 2 Q2 | 3 Q3 | 4 Q4 | Total |
|  |  | \% | \% | \% | \% | $\mathrm{n}=100 \%$ | \% | \% | \% | \% | $n=100 \%$ |
| Rsex | 1 Male | 6.1 | 26.8 | 32.3 | 34.9 | 3028 | 45.0 | 24.0 | 15.6 | 15.4 | 416 |
| $\begin{array}{\|l} \text { Person } 1 \\ \text { SEX } \end{array}$ | 2 Female | 16.0 | 33.9 | 29.9 | 20.2 | 2431 | 63.0 | 23.7 | 9.2 | 4.1 | 1583 |
|  | Epsilon | -9.9 | -7.1 | +2.3 | +14.7 |  | -18.1 | +0.3 | +6.5 | +11.3 |  |

Pencil and paper exercise: complete the blank table:
Difference in earnings of men and women controlling for hours worked (group Q4 only)

|  | All |  | Full time |  | Part time |  | Epsilon |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| All | $\%$ | $($ | $)$ | $\%$ | $($ | $)$ |  |

Step by step to arrive at:

|  | All | Full time | Part time | Epsilon |
| :---: | :---: | :---: | :---: | :---: |
| All | $22.5 \%$ | $28.3 \%$ | $\begin{aligned} & \hline 6.52 \% \\ & \text { (1999) } \end{aligned}$ | +13.8 |
| Men | $32.5 \%$ <br> (3444) | 34.9\% (3028) | $15.4 \%$ | +19.5 |
| Women | $13.8 \%$ | $24.2 \%$ | $4.1 \%$ | +20.1 |
| Epsilon | +18.7 | +10.7 | +11.3 |  |

Students find \%\% easier to understand, but the underlying logic is a platform for more advanced modelling.

The syntax for the ESS6 sample would be:
ctables /TABLE gndr BY freehms [ROWPCT.COUNT TOTALS [COUNT]] /CATEGORIES VARIABLES= freehms TOTAL=YES
/TABLE rlgblg BY freehms [ROWPCT.COUNT TOTALS [COUNT]] /CATEGORIES VARIABLES= freehms TOTAL=YES .

## Appendix 2: Elaboration

SPSS syntax suggested by Bruce Weaver for a new macro: ELABORATE
I've modified it for $Y=$ freehms, $X=$ gndr

```
* Encoding: UTF-8.
DEFINE elaborate
( Y = !CHAREND('/') /
RowVar = !CHAREND('/')/
ColVar = !CMDEND ).
CTABLES
/TABLE !RowVar [C] > !ColVar [C] by !Y [c][ROWPCT.totaln, COUNT]
/SLABELS POSITION=ROW VISIBLE=NO
/CATEGORIES VARIABLES= !y TOTAL=YES
/TITLES CAPTION ='NOTE: Cells show ROWPCT and COUNT'.
!ENDDEFINE.
```

* Read in some data to illustrate.
* Modify path on the FILE HANDLE command as needed.

FILE HANDLE TheDataFile
/NAME='C:IUsers\John HalllDesktoplch4jfh.sav' .
NEW FILE.
GET FILE = "TheDataFile".

* Call the macro.
elaborate $\mathrm{Y}=$ freehms $/$ RowVar = gndr/ ColVar = rlgblg.


## Example using data from ESS_Practice.sav

Model: Dependent $\mathrm{Y}=$ freehms $\quad$ Independent $\mathrm{X}=$ gndr $\quad$ Control $\mathrm{T}=$ rlgblg
Had to fiddle with the table to get this and have yet to try losing the \% sign in each cell, and to put brackets round the n . Cells show \% of base n .

|  |  |  |  | freehms Gay | ys and les | ns free to | life as they | wish |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 1 Agree strongly | 2 Agree | 3 Neither agree nor disagree | 4 Disagree | 5 <br> Disagree strongly | Total |
| gndr | 1 Male | rlgblg Belonging to 1 Yes |  | 19.5\% | 34.3\% | 15.6\% | 12.3\% | 12.9\% | 100.0\% |
| Gend |  | particular religion |  | 2856 | 5036 | 2288 | 1806 | 1890 | 13876 |
| er |  | or denomination | 2 No | 31.9\% | 30.9\% | 12.3\% | 9.5\% | 10.6\% | 100.0\% |
|  |  |  |  | 3707 | 3593 | 1426 | 1105 | 1234 | 411064 |
|  | 2 Female | rlgblg Belonging to particular religion or denomination | 1 Yes | 24.1\% | 30.6\% | 14.8\% | 10.3\% | 12.6\% | 100.0\% |
|  |  |  |  | 4705 | 5972 | 2893 | 2008 | 2449 | 18027 |
|  |  |  | 2 No | 40.8\% | 28.9\% | 11.4\% | 7.0\% | 7.1\% | 100.0\% |
|  |  |  |  | 4153 | 3939 |  | 156 | 11 | 7239682 |

[^3]
[^0]:    1 In the video Data View displays labels instead of values.

[^1]:    2 See: 1.1.1 Pre-course questionnaire on interests and skills
    3 Deborah Youdell is now Professor of Sociology of Education, Birmingham University; Katie Featherstone is now Director of Postgraduate Studies (Research) School of Nursing and Midwifery Studies Cardiff University
    4 See 1.2.1 Data transfer sheet and 1.2.2 Preliminary data exercise: no SPSS for Windows or Excel in those days!

[^2]:    5 See Appendix 1: Example of CTABLES

[^3]:    NOTE: Cells show ROWPCT and COUNT (base n for \%)

