1.1.3 Introduction to the use of computers in survey analysis ${ }^{1}$

[Updated 5 March 2020 and 23 August 2010 from 2006, 1992 and 1973 versions, but still with (historically interesting) output from pre-Windows versions of SPSS.]

Survey researchers daily need to solve problems caused by human error. Interviewers may ask the wrong questions, or mark the wrong answers: respondents either mishear or misinterpret questions they are asked. Hence a great deal of attention should be paid, not only to interviewer training and fieldwork checks, but also to questionnaire wording and design, in order to minimize error from these sources.

When completed schedules are returned, coders may assign wrong codes to answers, and keypunchers may punch cards ${ }^{2}$ with wrong numbers in the right columns or right numbers in the wrong columns: hence large proportions of coding should be double-checked, and all card punching verified, on the theory that the chances of making the same mistake twice are quite low.

However, even with quality control operating at its most efficient, errors may still appear in the raw data, and these need to be detected and corrected before analysis can begin. It is at this stage that the computer becomes useful as a research tool.

It is sound practice in all survey research to allocate to each survey a unique name or number which is included in the data for each interview. Each interview should also be given a unique number to distinguish it from other interviews in the same survey, and if the data from the interviews are punched on more than one card then each card should also be numbered. If cards are in free format, or if paper tape is used, then a "rogue value" should be used to mark the end of each interview. These simple rules should enable the researcher to check by computer that each interview has the correct number of codes, and that, if cards are used, they are all present (ie no missing cards) and in the correct sequence, and that there no duplicate cases or cards within cases.

Wherever the necessary equipment and programs are available, it is both easier and safer to transfer all the punched data from cards or paper tape direct to magnetic tape or disk and to use the computer for all subsequent processing. The computer can also be used to provide the researcher with a copy of the raw data, and a copy of the latest edition of magnetic tapes - just in case. It is strongly recommended to keep at least one copy, and preferably two, of each edition of a data set. Sometimes data are entered into the computer in batches as questionnaires are coded, in which case they may be out of serial number sequence: at other times data are entered after all questionnaires have been coded and in serial number order.

[^0]An example of data out of sequence is given in Figure 1a below.

Figure 1a: Unsorted data file (with card layout template)

0	1	2	3	4	5	6	8
12345678901234567890123456789012345678901234567890123456789012345678901234567890							

0119	11190580	8341D	048001112814 S
0451	11190580	8411C	048001222816 Q
0148	15160580	8153H	107907122844 S
1234	12200580	8428BFI	20058000
0149	13210580	8411C	19058001111811 E
0122	12200580	8427C	18067701 1842B
1236	13210580	8215H	0879011338 0NP
1235	13210580	8481CJK	06058001111843 CEI
1237	13210580	8145H	17077901111814H
1205	13220580	8147H	0474311294 XN
1204	13220580	8451CJK	07058001111811 EJ
1203	13210580	811YEG	00111
1202	13210580	8164KS	0479 1122815NS
0123	15230580	8118BE	00111
1127	15230580	8327D	06780111191 XTW
1128	15300580	8413CJK	057805111841 CE
1179	15300580	8 Y1M	260580 4111841CEJ
0123	15230580	8418BE	00111
1176	15230580	8414BJ	0980 1111816K
0124	15230580	8423CJ	127804111842 CJ
1238	12270580	8158H	00111
1241	12270580	8144B	29127901444840 N
1177	12270580	8326DES	112
0125	12270580	8214H	6525122810 N
0050	12270580	8321DJK	057903111811 H
1242	12270580	8161K	20058001111812 F
1240	12270580	8211H	20048001111832 D
1239	12270580	8171K	25058001111814 H
1243	12270580	8423B	127901111815 E
1178	13280580	8314DJK	107903111834 H
1001	13280580	8235H	0279 113815N
1126	13280580	81662	22097503211841 AF
1152	13280580	8162K	09048001111840 C
0536	15160380	8124H	15017902111814H
0223	11190580	8146H	087801111814H
0537	11190580	8247B	

122031 HQ
$112191 \quad \mathrm{HQ}$
22431 HQ
12813 HQ
12512 HQ
2271313815 HQ
22113 HQ
23013 HQ
22315 HQ
13114 HQ
114132 HQ
225131281421 HQ
21812 HQ
22212112491 HQ
22331 HQ
1233121912 HQ
21812 HQ
21913 HQ
12014 HQ
16021 HQ
11813321721 HQ
133142238 HQ
14413124122 HQ
123031112513 HQ
1273 HQ
$122031 \quad \mathrm{HQ}$
1535 HQ
22314 HQ
2213112612 HQ
22413112381 HQ
21812 HQ
11721 HQ
134152272211 HQ
14015 HQ
21612 HQ

In the above example the first four columns contain the serial number from the original questionnaire and the last two columns contain a code for which survey they came from. The blank columns are deliberate as they help to give a visual clue as to whether data have been entered in the correct columns.

The computer can also be used to sort the data so that all the cases and all the cards (records) within cases are in the right order. An example of sorted data is given in Figure 1b below.

Figure 1b: Sorted data file (same data as Figure 1a)

12345678901234567890123456789012345678901234567890123456789012345678901234567890

0050	12270580	8321 DJK	057903111811 H	1	23031112513	HQ
0119	11190580	8341D	048001112814 S	1	13231	HQ
0122	12200580	8427C	180677011842 B		12512	HQ
0123	15230580	8118BE	00111		21812	HQ
0123	15230580	8418BE	00111		21812	HQ
0124	15230580	8423 CJ	127804111842 CJ		12014	HQ
0125	12270580	8214H	6525122810 N		14413124122	HQ
0148	15160580	8153H	107907122844 S	1	12191	HQ
0149	13210580	8411C	19058001111811 E		12813	HQ
0223	11190580	8146H	087801111814 H		14015	HQ
0451	11190580	8411C	0480012228162	1	22031	HQ
0536	15160380	8124 H	15017902111814 H		134152272211	HQ
0537	11190580	8247B			21612	HQ
1001	13280580	8235H	$0279113815 N$		22413112381	HQ
1126	13280580	81662	22097503211841 AF		21812	HQ
1127	15230580	8327D	06780111191 XTW		22212112491	HQ
1128	15300580	8413CJK	057805111841 CE		22331	HQ
1152	13280580	8162K	09048001111840 C		11721	HQ
1176	15230580	8414 BJ	09801111816 K		21913	HQ
1177	12270580	8326DES	112		133142238	HQ
1178	13280580	8314 DJK	107903111834 H		2213112612	HQ
1179	15300580	8 Y1M	2605804111841 CEJ		1233121912	HQ
1202	13210580	8164 KS	$04791122815 N S$		225131281421	HQ
1203	13210580	811YEG	00111	1	14132	HQ
1204	13220580	8451CJK	07058001111811 EJ		13114	HQ
1205	13220580	8147H	0474311294 XN		22315	HQ
1234	12200580	8428BFI	20058000		22431	HQ
1235	13210580	8481CJK	06058001111843 CEI		22113	HQ
1236	13210580	8215H	0879011338 ONP		2271313815	HQ
1237	13210580	8145H	17077901111814 H		23013	HQ
1238	12270580	8158H	00111		16021	HQ
1239	12270580	8171K	25058001111814 H		1535	HQ
1240	12270580	8211H	20048001111832 D	1	22031	HQ
1241	12270580	8144B	29127901444840 N		11813321721	HQ
1242	12270580	8161K	20058001111812 F		1273	HQ
1243	12270580	8423B	127901111815 E		22314	HQ

In the above example the data have now been sorted into order by serial number. This makes it much easier to check for missing or duplicate serial numbers, to correct data errors and also to check against the original questionnaires (which should also be kept in serial number order).

Next the computer is used to check that all codes punched fall within the range allocated for each item. For instance the replies to a question "How do you normally travel to work?" may be coded "Walk" = 1, "Bus" = 2, "Train" = 3, "Car" = 4, "Other replies" = 5. The computer is used to make sure that all codes for that item are within the range 1-5 and to print out the serial numbers of questionnaires for which data fall outside the range. A typical error message ${ }^{3}$ might read:

CASE 329 CARD 1 COLUMN 24 NOT IN RANGE. SHOULD BE 1 TO 5 IS 7.

The computer will not detect coding errors such as people coded as "Walk", but whose actual reply was "Bus", which should have been detected by the interviewer or by the coder. Sometimes these errors can be detected by the second type of data check.

The computer can now be used to carry out logical checks ${ }^{4}$ on the coded responses. Typical examples of this are checks carried out to see that single 16 year-old girls are not coded as having been married for 20 years, or that a head of household coded as AB is not classed somewhere else as DE, or that a woman coded as full-time housewife has a personal income from a paid job in excess of $£ 5000$ p.a. In the journey to work example above, a person coded as "Walk", but with a travel-to-work cost per week greater than zero, would require further inspection of the original completed schedule.

If the data set is not too large, it is very easy to spot certain kinds of errors simply by printing out the contents of the data file on the line-printer or listing them on a computer screen. Listing them in case-order card-within-case will help to check that all cards are present for each case. A line editor with a facility for jumping data lines in multiples of the number of cards per case is particularly helpful in this respect as the card numbers should always be the same. Listing each card separately (e.g. all card one's followed by all card two's etc.) helps to spot entries in columns which are supposed to be blank, or blanks where there should be entries. It is particularly useful to leave blank columns deliberately in fixed locations as these will show up as vertical straight lines. (See figs 1a and 1b)

[^1]Once the data have been edited and cleaned, the researcher needs preliminary results in convenient form. One of the first things that is usually done is a simple holecount for each column, to reveal the distributions of responses.

Figure 2: Typical commercial holecount ${ }^{5}$ (including multipunches)

	1	2	3	4	5	6	7	8	9	0 X	X	Y	REJ	SUM	CRDS
1	67	0	0	0	0	0	0	0	0	88	0	0	0	155	155
	43.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	56.8	0.0	0.0	0.0	100.0	
2	20	20	20	20	20	16	10	9	10	10	0	0	0	155	155
	12.9	12.9	12.9	12.9	12.9	10.3	6.5	5.8	6.5	6.5	0.0	0.0	0.0	100.0	
3	30	0	0	0	0	0	0	0	0	125	0	0	0	155	155
	19.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	80.6	0.0	0.0	0.0	100.0	
4	16	16	16	16	15	16	15	15	14	16	0	0	0	155	155
	10.3	10.3	10.3	10.3	9.7	10.3	9.7	9.7	9.0	10.3	0.0	0.0	0.0	100.0	
5	5	4	10	0	0	0	0	0	0	16	0	4	121	39	155
	3.2	2.6	6.5	0.0	0.0	0.0	0.0	0.0	0.0	10.3	0.0	2.6	78.1	25.2	
6	5	2	2	12	2	2	2	5	2	2	0	0	122	36	155
	3.2	1.3	1.3	7.7	1.3	1.3	1.3	3.2	1.3	1.3	0.0	0.0	78.7	23.2	
7	0	0	155	0	0	0	0	0	0	0	0	0	0	155	155
	0.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0	
8	155	0	0	0	0	0	0	0	0	0	0	0	0	155	155
	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0	
9	0	0	0	0	0	0	0	0	155	0	0	0	0	155	155
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	100.0	
10	155	0	0	0	0	0	0	0	0	0	0	0	0	155	155
	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0	
11	155	0	0	0	0	0	0	0	0	0	0	0	0	155	155
	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0	
12	133	0	0	0	0	0	0	0	0	17	0	0	5	150	155
	85.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	11.0	0.0	0.0	3.2	96.8	
13	34	9	20	27	15	5	0	0	15	29	0	0	1	154	155
	21.9	5.8	12.9	17.4	9.7	3.2	0.0	0.0	9.7	18.7	0.0	0.0	0.6	99.4	
14	29	19	31	20	18	0	0	0	0	37	0	0	1	154	155
	18.7	12.3	20.0	12.9	11.6	0.0	0.0	0.0	0.0	23.9	0.0	0.0	0.6	99.4	
15	0	1	3	0	57	0	1	0	0	92	0	0	1	154	155
	0.0	0.6	1.9	0.0	36.8	0.0	0.6	0.0	0.0	59.4	0.0	0.0	0.6	99.4	
16	146	0	0	0	0	0	0	0	0	6	0	0	3	152	155
	94.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.9	0.0	0.0	1.9	98.1	

The headings are the possible hole-sites on each card-column, REJ means the column has no hole punched, SUM is the sum of all holes punched in that column for the whole sample and CRDS is the number of cases.

In the example above, for each column of the card, the upper row of figures gives the number of cases with each hole-site punched and the lower row the percentage of cases to one decimal place.

This analysis can only be done one column at a time by some computer programs, but it provides a quick visual check on distributions and can help to spot rogue data.

[^2]The next step is to run (unlabelled) frequency counts on some or all of the variables from the survey (source data: SSRC Survey Unit Quality of Life in Britain survey,1973)

FIG.3: FREQUENCY COUNT ${ }^{6}$ WITHOUT LABELS

AGEGRP	Code	Absolute freq	Relative freq (\%)	Adjusted freq (\%)	Cumulative freq (\%)
	1.	206	22.1	22.1	22.1
	2.	214	23.0	23.0	45.1
	3.	242	26.0	26.0	71.0
	4.	256	27.5	27.5	98.5
	99.	14	1.5	1.5	100.0
	Total	932	100.0	100.0	
Valid cases	932	Missing	cases	0	

A more advanced presentation of frequency distributions for simple variables is to use titles and captions. Data can be presented as numbers or percentages in categories of the variable (marginal distribution) or pictorially in a bar-chart or histogram. For variables measured on ordinal, interval or ratio scales some statistical measures of location, dispersion and shape may be wanted, but all these measures need to take account of codes given for missing answers (Refused, Don't Know, Not applicable, etc).

FIG. 4: FREQUENCY COUNT WITH LABELS

AGEGRP: Age	Code	Absolute freq	Relative freq (\%)	Adjusted freq (\%)	
17-29	1.	206	22.1	22.4	22.4
30-44	2.	214	23.0	23.3	45.8
45-59	3.	242	26.0	26.4	72.1
$60+$	4.	256	27.5	27.9	100.0
	99.	14	1.5	Missing	100.0
	Total	932	100.0	100.0	
Valid cases	918	Missing	cases	14	

[^3]These initial frequency distributions are useful to the researcher when deciding upon groupings or checking on the representativeness of the sample.

Some computer programs can also provide graphical output which is often easier to understand than simply looking at sets of numbers. This is particularly useful with interval scaled data as the shape of the distribution can be seen at a glance.

```
FIG.5: HISTOGRAM` PLOT (WITH OPTIONAL STATISTICS)
```


VAR147 Q147 SATISFACTION WITH WHOLE LIFE

Code
I

1 ** (1)
I
2 ** (1)
I
3 ** (2)
I
4 ****** (9)
I
5 ********** (18)
I
6 ********** (17)
I
7 ******************* (35)
I

I
9 ****************** (34)
I
10 ****************** (33)

020	40	60	80	100

Mean	7.610	Median	7.867	Std dev	1.801
Valid cases	210	Missing cases	0		

[^4]Some variables, e.g. age last birthday, may have been coded in single years across two cardcolumns, but the computer will produce tables of these quite easily.

Figure 6: Condensed ${ }^{8}$ format frequency count with full range of statistics

AGE AGE OF R IN COMPLETE YEARS

Code Wild	$\begin{array}{r} \text { Freq } \\ 15 \end{array}$	code	Freq	Code	Freq
n	47.033	Std err	0.586	Median	47.464
e	27.000	Std dev	17.733	Variance	314.466
tosis	-1.054	Skewness	0.100	Range	72.000
imum	18.000	Maximum	90.000		

8 This table was produced with the command:

Once all groupings and recodings are complete, the computer can be used to produce initial crosstabulations. Usually these tabulate the response to the substantive part of the questionnaire against standard demographic information (Sex, age group, social class, marital status, house-type etc). The simplest output of this kind gives a table title and a table with no headings other than the card and column numbers of the variables being tabulated, and no captions other than the code numbers. The table may contain raw counts, percentages, or both, depending on the options selected. The base for percentages may be row totals, column totals, or the global total for the table.

Figure 7: Contingency table without labels

Count				
Row \%	1		3	Row Total
		2		
1	24	230	131	385
	6.2	59.7	34.0	41.6
2	33	286	222	541
	6.1	52.9	41.0	58.4
Column	57	516	353	926
Total	6.2	55.7	38.1	100.0

Number of missing observations $=6$

The researcher is left to add row and column captions from the coding list. A more advanced presentation to include captions is normally used only by experienced researchers, especially in market research, who have little time for playing with data and require an output in a form which can be (photocopied and) included directly in a research report. Whilst such presentation is the most convenient to read, it is not necessarily recommended for beginners because of the complex preparations required. Moreover all text and related programming occupies useful core storage in the computer, and the processing may add considerably to the time, and therefore cost, of the job.

Figure 8 gives an example of output with row and column captions.

Figure 8: Contingency table with labels (see figure 7 above)
SEX SEX OF RESPONDENT by HAPPY HOW HAPPY IS R?

Number of missing observations = 6

A good researcher will not be content with analysing two variables at a time, but will want to test apparent relationships between two variables by controlling for a third variable. Any good survey analysis program should allow this, up to three, four or even more levels of control.

Figure 9: Conditional contingency tables - illustrating elaboration

SEX SEX OF RESPONDENT by HAPPY HOW HAPPY IS R?
Controlling for:

AGEGROUP GROUPED AGE OF R Value: 1 17-29

Controlling for:

AGEGROUP GROUPED AGE OF R Value: 2 30-4

Figure 9 Conditional contingency tables (contd)

SEX
SEX OF RESPONDENT
by HAPPY
HOW HAPPY IS R?

Controlling for:
AGEGROUP GROUPED AGE OF R Value: 3 45-59

SEX SEX OF RESPONDENT by HAPPY HOW HAPPY IS R?

Controlling for:

AGEGROUP GROUPED AGE OF R Value: 4 60+

HAPPY
Count :
Row \% :NOT TOO PRETTY VERY Row : HAPPY HAPPY HAPPY Total
: 1 : 2 : 3 :
SEX

MEN
1 : 7 : 40 : 42 : 89

WOMEN

Column	21	118	112	251
Total	8.4	47.0	44.6	100.0

[^5]Finally, percentaging in tables may be needed not only in rows, but also in columns or even on the whole table.

Figure 10: Contingency table with all percentages
SEX
SEX OF RESPONDENT
by AGEGROUP GROUPED OF R

AGEGROUP							
	Count		:	30-44	45-59	$60+$	Row
	Row	\%	:17-29				
	Col	\%	:				Total
	Tot	\%	: 1	: 2	3	4	
SEX							
MEN		1	: 88	90	110	92	380
			: 23.2	23.7	28.9	: 24.2	41.4
			: 42.7	42.1	45.5	: 35.9	
			: 9.6	9.8	12.0	10.0	
WOMEN		2	: 118	124	132	164	538
			: 21.9	23.0	24.5	$: 30.5$	58.6
			: 57.3	57.9	54.5	: 64.1	
			: 12.9	: 13.5	14.4	: 17.9	
	Colu		206	214	242	256	918
	Tot		22.4	23.3	26.4	27.9	100.0

Number of missing observations = 14
[NB: Such tables may occasionally be needed for checking samples against known population parameters, but their extensive use in analysis is usually a sign of inexperience and anxiety in researchers who are either too proud to ask for advice and assistance or who are possibly even completely incompetent. It is also a waste of paper, time and money!]

Now move on to 1.2: Coding data from questionnaires
[Back to Block 1 menu]

[^0]: 1 Author's note: This short paper was first written in 1973 for trainee researchers and for clients of the then SSRC Survey Unit, to help explain data processing and tabulation to people with little or no experience of survey research or computing. The original text was later retyped into the Vax computer at PNL and the output tables are from various versions of SPSS current on the CDC2000 at ULCC or the Dec-10/Dec 20/Vax cluster at PNL at the time. The whole document was later then downloaded into WordStar4. It has now been converted and edited for MSWord. There have been many developments in the 37 years since it was written, particularly in personal computers, computer assisted interviews, on-line surveys and the Windows version of SPSS, but I have left the original text rather than update the whole document.

 The data used in figs 2 to 10 inclusive are all from the Quality of Life in Britain surveys conducted at the SSRC Survey Unit by the late Dr Mark Abrams and myself between 1971 and 1975. Data from the surveys are deposited with the UK Data Archive at Essex University and are available as SPSS portable files for secondary analysis, together with user documentation in pdf format. For a full description of survey content and of technical information on material deposited at Essex click here (some is also available on this site).

 2 In 1973 data prep and analysis specs were done using 80-column Hollerith cards, but at least results came off a lineprinter. When the author started doing survey research in 1965 it was all done using paper tape, including the results!

[^1]: 3 This example was produced by Survey Data Tabulation (SDTAB), a program written by Peter Wakeford, then Director of Computer Services at LSE

 4 Modern computer-assisted personal interview software (CAPI) can be programmed to pick such errors up during the interview itself.

[^2]: 5 This example is of output from Donovan Data Systems as used by Research Services Ltd

[^3]: ${ }^{6}$ This and all subsequent examples of tables are from earlier mainframe versions of SPSS at ULCC and PNL

[^4]: 7 This was done many years before the graphics facilities were added to SPSS!

[^5]: Number of missing observations =
 20

