Block 2: Analysing one variable

2.1.2.1 Tutorial - Frequencies for nominal and ordinal variables [Updated 1 Oct 2010]

Exemplar: Pre-course survey of interests and experience.
Documentation: Questionnaire
File:
myclass3.sav
If you do not already have these, download and save them now in a folder on your computer called myclass or copied to a floppy or CD . The files from this survey are small enough to go on a floppy in drive a: but files from other surveys are larger than 1.4 mb and will need to be kept in a folder on your computer, burned to a CD or stored on a remote server. If you don't have SPSS on your computer, you should still be able to follow the tutorial even if you can't do the exercises.

Your myclass folder should look like this if you have done all the exercises and downloaded the questionnaire. In this tutorial we only need the questionnaire and the SPSS saved file myclass3.sav

Using the SPSS saved file myclass3.sav we created as an exercise in session 1.3.3.7 (SPSS for real - my first saved file) and using the Questionnaire as user-documentation, let's have a look at a nominal ${ }^{1}$ variable:

Main mode of travel (to campus)

[^0]... and an ordinal ${ }^{2}$ variable:
Satisfaction with the National Health Service

Q3. All in all, how satisfied or dissatisfied would you
say you are with the way in which the National Health
Service runs nowadays? (Tick one box)

There is only one line of data for each case: the data for question Q. 5 are stored on column 24 and for Q. 3 on column 14. We used positional names ${ }^{3}$ for these when we read the data into SPSS to create the file, so the variables will be called v24 and v14.

In my SPSS examples I use UPPER CASE for presenting general FORMATS and lower case for the actual syntax needed to run analyses. I also use the same colour-coding as SPSS/PASW 18 for commands, sub-commands and keywords. SPSS 15 and earlier versions do not have this facility, but I use it because, in addition to laying syntax out with longer indents and blank lines, it's an additional aid to learning and understanding.

FREQUENCIES

The FREQUENCIES command produces frequency tables, descriptive statistics and graphics for one or more variables.

General format: (You need to get used to this terminology: I use it a lot!)

FREQUENCIES <varlist>

/STATISTICS <statistics list>
/ <graphics options>
/ <other options>
Within the FREQUENCIES procedure there are a number of sub-commands available for statistics, graphics and printed output. The most common options used are for descriptive statistics and for printing charts. Others allow you to change the order in which the categories appear in tables, suppress tables whilst printing statistics or charts etc.

The simplest form of the command is:
FREQUENCIES <varlist>

[^1]Let's do the nominal variable first.

The SPSS command is:

frequencies $\mathbf{v 2 4}$.

. . . which produces the following table:
v24 Q6: Main transport mode

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Public transport	115	68.0	68.0	68.0
	Car	26	15.4	15.4	83.4
	Motor cycle or cycle	15	8.9	8.9	92.3
	Walk	13	7.7	7.7	100.0
	Total	169	100.0	100.0	

The Frequency column contains the count (actual number) of cases in each category.
The Percent column displays these as a percentage (\%) of the whole sample (base $\mathrm{N}=169$)
The Valid Percent column displays them as a percentage of the valid (non-missing) cases (there aren't any so $\mathrm{N}=169$ again).

The Cumulative Percent column displays them as the percentage so far included in the table, starting with (0% before) the first row and ending with 100% in the last, by adding the $\%$ for each successive category to the \% for the previous category (base $\mathrm{N}=169$).

Cumulative Percent can be useful for deciding on cutting points for grouping interval or ordinal scale variables into fewer categories. It seems pretty pointless for nominal variables, but it's been there since 1968 so perhaps it's sacred.

The above table is in the default output format with rows in ascending order of the values used for coding the replies (/FORMAT AVALUE) but you can also have descending order (/FORMAT DVALUE). It can be edited to get rid of unwanted columns by manipulating it using pivot tables in the output, but that just complicates things and is a bit advanced for beginners.

You can change the order in which the categories appear, but there is no inherent meaning to the coded values. However, with nominal variables iit is sometimes useful to present tables in which the categories are arranged in ascending or descending order of the number of cases. This table can also be presented in ascending or descending order of size of category (/FORMAT AFREQ or DFREQ).

This would normally be in descending order of number of cases in the category, so:
frequencies $\mathbf{v 2 4}$
/format dfreq .
v24 Q6: Main transport mode

					Cumulative Percent
Valid	Public transport	115	68.0	68.0	68.0
	Car	26	15.4	15.4	83.4
	Motor cycle or cycle	15	8.9	8.9	92.3
Walk	13	7.7	7.7	100.0	
	169	100.0	100.0		

Graphics and statistics options

As well as frequency tables you can also specify appropriate graphic displays and descriptive statistics. If you only want the chart or the statistics, you can suppress the table with:

~~~ /FORMAT NOTABLE.
For nominal variables, the only legitimate charts are a barchart (/BARCHART ) or a piechart (/PIECHART) Barcharts are used when there is no intrinsic order to the categories or when there is an order, but you don't know what the assumed underlying metric is (and therefore how wide the bars should be) so the bars must never touch.

To get a barchart without the table:
frequencies \(\mathbf{v 2 4}\)
/barchart
/format notable .


To get a pie chart (without the table):
frequencies \(\mathbf{v 2 4}\)
/piechart /format notable .

Q6: Main transport mode

[NB: A piechart is normally only used for the whole sample: make sure you have plenty of ink!]
The only permissible statistic for nominal variables is the mode (the most commonly occurring value) but you can also legitimately request the lowest and highest code values (/STATISTICS = followed by one or more of MINIMUM, MAXIMUM, or MODE ). You never know if there are values way outside the expected range!

\section*{frequencies v24}
/statistics minimum maximum mode /format notable .

\section*{Statistics}
v24 Q6: Main transport mode
\begin{tabular}{|ll|r|}
\hline N & Valid & 169 \\
& Missing & 0 \\
Mode & & 1 \\
Minimum & 1 \\
Maximum & 4 \\
\hline
\end{tabular}

Now let's have a look at the ordinal variable


The SPSS command is:
frequencies v14.
v14 Q3: Satisfaction with running of NHS
\begin{tabular}{|ll|r|r|r|r|}
\hline & & & & \multicolumn{1}{c|}{\begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular}} \\
\hline Valid & Very satisfied. & 2 & 1.2 & 1.2 & 1.2 \\
& Quite satisfied. & 13 & 7.7 & 7.8 & 9.0 \\
& Neither & 27 & 16.0 & 16.3 & 25.3 \\
& Quite dissatisfied & 64 & 37.9 & 38.6 & 63.9 \\
& Very dissatisfied & 60 & 35.5 & 36.1 & 100.0 \\
& Total & 166 & 98.2 & 100.0 & \\
Missing & System & 3 & 1.8 & & \\
Total & & 169 & 100.0 & & \\
\hline
\end{tabular}

The Frequency column contains the count (actual number) of cases in each category.
The Percent column displays these as a percentage (\%) of the whole sample (base \(\mathrm{N}=169\) ),
The Valid Percent column displays them as a percentage of the valid (non-missing) cases ( \(\mathrm{N}=\) 166)

The Cumulative Percent column displays them as the percentage so far included in the table, starting with ( \(0 \%\) before) the first row and ending with \(100 \%\) in the last, by adding the \(\%\) for each successive category to the \% for the previous category (base \(\mathrm{N}=166\) ).

This is a case where Cumulative Percent can be useful for deciding on cutting points for grouping ordinal (and also interval) scale variables into fewer categories.

The default is ascending order of numeric values (here values 1 to 5 ) used for coding the replies (/FORMAT AVALUE ), but you can also have descending order (/FORMAT DVALUE ).

\section*{frequencies v14}
/format dvalue .
v14 Q3: Satisfaction with running of NHS
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & Frequency & Percent & Valid Percent & Cumulative Percent \\
\hline \multirow[t]{6}{*}{Valid} & Very dissatisfied & 60 & 35.5 & 36.1 & 36.1 \\
\hline & Quite dissatisfied & 64 & 37.9 & 38.6 & 74.7 \\
\hline & Neither & 27 & 16.0 & 16.3 & 91.0 \\
\hline & Quite satisfied. & 13 & 7.7 & 7.8 & 98.8 \\
\hline & Very satisfied. & 2 & 1.2 & 1.2 & 100.0 \\
\hline & Total & 166 & 98.2 & 100.0 & \\
\hline Missing & System & 3 & 1.8 & & \\
\hline Total & & 169 & 100.0 & & \\
\hline
\end{tabular}

Tables can also be presented in ascending or descending order of size of category (/FORMAT AFREQ or DFREQ ) but this is pointless for ordinal variables as it will jumble up categories for which the order needs to be retained.

Because ordinal variables do not have a known and fixed metric, there is no way of knowing where any coded value should appear on the assumed underlying metric, or what its limits are. The only legitimate chart you can use is a barchart and the only legitimate statistics you can calculate are the cutting points to divide the sample into groups.

To find out where the centre of the distribution is we can't calculate an arithmetic mean but we can find the median (the point at which the sample can be divided into two equal sized groups: /MEDIAN) or any other cutting points. These latter are known as percentiles (/PERCENTILES) with subcategories of quartiles and deciles, but these are best kept for interval and ratio scales.

With ordinal scales the cutting points are likely to land on an actual value, not between two values, so it's better to choose cutting points by inspecting the cumulative frequencies.

\section*{Abbreviated syntax}

As we have already seen, SPSS is case insensitive for syntax, and I prefer to work with abbreviated syntax in lower case as this not only saves time, but is much easier on the eye.

However, if you start typing direct into the syntax window, SPSS prompts with menu suggestions in UPPER CASE. If you click on these, the full command appears in UPPER CASE in colourcoded text. If the command is incomplete or SPSS can't make sense of the syntax, the text will appear in red. If you use abbreviated syntax, all or part of the command may not be colourcoded. The examples above follow the colour-coding of SPSS and, for now, l've typed them out in full. Variable names always have to be written in full.

You may also find it useful to put a space between commands to keep them visually separate, and also before the full stops as this makes them easier to check if they are present at the end of each command (or not, a common source of errors).

Once you get used to writing SPSS syntax, you can begin to use the abbreviated forms. SPSS only reads the first 3 or 4 characters of commands, sub-commands and keywords anyway, so the following will work just as well, but not everything will be colour-coded in the syntax window.

Thus the following examples will also work.
freq v24.
freq v14 v24 /bar .
freq \(\mathbf{v 2 4} /\) sta min max med.
freq v14 v24 /for not/bar .
freq \(\mathbf{v 2 4}\) /for not /pie .

\section*{End of tutorial.}

Now repeat the above analysis yourself by working through the following exercise 2.1.2.2.
Next session: 2.1.2.2 Exercise - Frequencies for nominal and ordinal variables
[Back to Block 2 menu]~~~


[^0]:    ${ }^{1}$ Nominal variables have distinct and exclusive categories with no inherent properties other than their names. They can be jumbled up into any order without losing any information.

[^1]:    ${ }^{2}$ Ordinal variables have distinct and exclusive categories, plus one additional property: they have an inherent order which can be reversed, but not jumbled up without losing important information.
    ${ }^{3}$ See 1.3.1 Conventions for Naming Variables in SPSS

